A PROOF OF LEMMA 2

Proof. The proof technique is standard, and can be found in Zinkevich (2003); Hazan et al. (2016).

First, we prove the regret bound of (21). Note that by Definition 2, s}/(x) is 22G?-strongly convex. For convince, we
denote az+1 = 1/(2n2G?t), \* = 2n2G?, and define the upper bound of the gradients of s (x) as
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By the update rule of x};%;, we have
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Summing over 1 to 7" and applying definition 2, we get
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Next, we prove the regret bound of (22). We start with the following inequality
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where 12/} (x) denotes the Hessian matrix. The inequality implies that r2¢7(x)  r£](x)(r¢7(x))". According

to Lemma 4.1 in Hazan et al. (2016), £} (x) is 1-exp-concave. Next, we prove that the gradient of £](x) can be upper
bounded as follows
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By Theorem 4.3 in Hazan et al. (2016), we have
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Finally, we prove the regret bound of (23). Note that the gradient of ¢,(x) is upper bounded by max,cp ke (X)k
n°G. Define m, = ﬁ. By the convexity of ¢,(x), we have 8u 2 D,
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On the other hand, according to the update rule of x¢, ;, we have
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where the inequality follows from Theorem 2.1 in Hazan et al. (2016). Hence,

2C ¢, (x¢





