Supplementary Material of Revisiting Smoothed

Thus, if α 2, we have

$$\overset{\mathscr{A}}{\underset{t=1}{\overset{t=1}{\overset{t=1}{\alpha}}}} f_{t}(\mathbf{x}_{t}) + k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k$$

$$\overset{(8),(23)}{\underset{\alpha}{\overset{2}{\alpha}}} \frac{2}{\underset{t=1}{\overset{\mathscr{A}}{\alpha}}} f_{t}(\mathbf{u}_{t}) + \overset{\mathscr{A}}{\underset{t=1}{\overset{ku_{t}}{\alpha}}} ku_{t} \quad \mathbf{u}_{t-1}k + \overset{\mathscr{A}}{\underset{t=1}{\overset{t=1}{\alpha}}} 1 \quad \frac{2}{\underset{\alpha}{\alpha}} f_{t}(\mathbf{u}_{t}) \qquad (24)$$

$$\overset{\mathscr{A}}{\underset{t=1}{\overset{t=1}{\beta}}} f_{t}(\mathbf{u}_{t}) + k\mathbf{u}_{t} \quad \mathbf{u}_{t-1}k$$

which implies the naive algorithm is 1-competitive. Otherwise, we have

$$\overset{\mathcal{H}}{\underset{t=1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t=1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{1}{\overset{t}1}{\overset{t}{1}{1}{1}{\overset{t}{1}{1}{1}{\overset{t}{1}{1}{1}{\overset{t}{1}{1}{1}{1}{1}$$

We complete the proof by combining (24) and (25).

A.2 Proof of Theorem 2

We will make use of the following basic inequality of squared ℓ_2 -norm [Goel et al., 2019, Lemma 12].

$$k\mathbf{x} + \mathbf{y}k^2 \quad (1+\rho)k\mathbf{x}k^2 + 1 + \frac{1}{\rho} \quad k\mathbf{y}k^2, \ 8\rho > 0.$$
 (26)

When t = 2, we have

$$f_{t}(\mathbf{x}_{t}) + \frac{1}{2}k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k^{2}$$

$$^{(26)}f_{t}(\mathbf{x}_{t}) + \frac{1+\rho}{2}k\mathbf{u}_{t} \quad \mathbf{u}_{t-1}k^{2} + \frac{1}{2} \quad 1 + \frac{1}{\rho} \quad k\mathbf{x}_{t} \quad \mathbf{x}_{t-1} \quad \mathbf{u}_{t} + \mathbf{u}_{t-1}k^{2}$$

$$^{(26)}f_{t}(\mathbf{x}_{t}) + \frac{1+\rho}{2}k\mathbf{u}_{t} \quad \mathbf{u}_{t-1}k^{2} + 1 + \frac{1}{\rho} \quad k\mathbf{u}_{t} \quad \mathbf{x}_{t}k^{2} + k\mathbf{u}_{t-1} \quad \mathbf{x}_{t-1}k^{2}$$

$$^{(9)}f_{t}(\mathbf{x}_{t}) + \frac{1+\rho}{2}k\mathbf{u}_{t} \quad \mathbf{u}_{t-1}k^{2} + \frac{2}{\lambda} \quad 1 + \frac{1}{\rho} \quad f_{t}(\mathbf{u}_{t}) \quad f_{t}(\mathbf{x}_{t}) + f_{t-1}(\mathbf{u}_{t-1}) \quad f_{t-1}(\mathbf{x}_{t-1}) \quad .$$
For $t = 1$ we have:

For t = 1, we have

$$f_1(\mathbf{x}_1) + \frac{1}{2}k\mathbf{x}_1 - \mathbf{x}_0k^2 \stackrel{(26),(9)}{\longrightarrow} f_1(\mathbf{x}_1) + \frac{1+\rho}{2}k\mathbf{u}_1 - \mathbf{u}_0k^2 + \frac{2}{\lambda} - 1 + \frac{1}{\rho} - f_1(\mathbf{u}_1) - f_1(\mathbf{x}_1) .$$

Summing over all the iterations, we have

First, we consider the case that

1
$$\frac{4}{\lambda}$$
 1 + $\frac{1}{\rho}$ 0, $\frac{\lambda}{4}$ 1 + $\frac{1}{\rho}$ (28)

and have

$$\overset{\mathcal{A}}{\underset{t=1}{\overset{t=1}{\lambda}}} f_{t}(\mathbf{x}_{t}) + \frac{1}{2}k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k^{2}$$
^{(27),(28)} $\frac{4}{\lambda} = 1 + \frac{1}{\rho} \quad \overset{\mathcal{A}}{\underset{t=1}{\overset{t=1}{\lambda}}} f_{t}(\mathbf{u}_{t}) + \frac{1+\rho}{2} \overset{\mathcal{A}}{\underset{t=1}{\overset{t=1}{\lambda}}} k\mathbf{u}_{t} \quad \mathbf{u}_{t-1}k^{2}$
max $\frac{4}{\lambda} = 1 + \frac{1}{\rho} \quad , 1+\rho \quad \overset{\mathcal{A}}{\underset{t=1}{\overset{t=1}{\lambda}}} f_{t}(\mathbf{u}_{t}) + \frac{1}{2}k\mathbf{u}_{t} \quad \mathbf{u}_{t-1}k^{2}$

To minimize the competitive ratio, we set

$$\frac{4}{\lambda} \quad 1 + \frac{1}{\rho} = 1 + \rho \) \quad \rho = \frac{4}{\lambda}$$

and obtain

$$\overset{\mathcal{H}}{\underset{t=1}{\overset{t}1}{\overset{t}{1}{\overset{t}1}{\overset{t}}{\overset{t}{1}{\overset{t}1}{\overset{t}}{\overset{t}{1}{\overset{t}1}{\overset{t}$$

Next, we study the case that

$$1 \quad \frac{4}{\lambda} \quad 1 + \frac{1}{\rho} \qquad 0 \quad \lambda \quad 1 + \frac{1}{\rho}$$

which only happens when $\lambda > 4$. Then, we have

$$\overset{\mathcal{H}}{\underset{t=1}{\overset{f_t(\mathbf{x}_t)}{\overset{f_$$

To minimize the competitive ratio, we set $\rho = \frac{4}{\lambda - 4}$, and obtain

which is worse than (29). So, we keep (29) as the final result.

A.3 Proof of Theorem 3

Since $f_t()$ is convex, the objective function of (10) is γ -strongly convex. From the quadratic growth property of strongly convex functions [Hazan and Kale, 2011], we have

$$f_t(\mathbf{x}_t) + \frac{\gamma}{2}k\mathbf{x}_t \quad \mathbf{x}_{t-1}k^2 + \frac{\gamma}{2}k\mathbf{u} \quad \mathbf{x}_tk^2 \quad f_t(\mathbf{u}) + \frac{\gamma}{2}k\mathbf{u} \quad \mathbf{x}_{t-1}k^2, \ \mathcal{B}\mathbf{u} \ \mathcal{Z}\mathcal{X}.$$
(30)

Similar to previous studies [Bansal et al., 2015], the analysis uses an amortized local competitiveness argument, using the potential function $ck\mathbf{x}_t$ \mathbf{u}_tk^2 . We proceed to bound $f_t(\mathbf{x}_t) + \frac{1}{2}k\mathbf{x}_t$ $\mathbf{x}_{t-1}k^2 + ck\mathbf{x}_t$ \mathbf{u}_tk^2 $ck\mathbf{x}_{t-1}$ $\mathbf{u}_{t-1}k^2$, and have

$$f_{t}(\mathbf{x}_{t}) + \frac{1}{2}k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k^{2} + ck\mathbf{x}_{t} \quad \mathbf{u}_{t}k^{2} \quad ck\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}$$

$$\stackrel{(26)}{f_{t}(\mathbf{x}_{t})} + \frac{1}{2}k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k^{2} + c \ 2k\mathbf{x}_{t} \quad \mathbf{v}_{t}k^{2} + 2k\mathbf{v}_{t} \quad \mathbf{u}_{t}k^{2} \quad ck\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}$$

$$\stackrel{(9)}{1} + \frac{4c}{\lambda} \quad f_{t}(\mathbf{x}_{t}) + \frac{1}{2}k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k^{2} + \frac{4c}{\lambda}f_{t}(\mathbf{u}_{t}) \quad ck\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}$$

$$= 1 + \frac{4c}{\lambda} \quad f_{t}(\mathbf{x}_{t}) + \frac{\lambda}{2(\lambda + 4c)}k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k^{2} + \frac{4c}{\lambda}f_{t}(\mathbf{u}_{t}) \quad ck\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}.$$

Suppose

$$\frac{\lambda}{\lambda + 4c} = \gamma, \tag{31}$$

we have

$$f_{t}(\mathbf{x}_{t}) + \frac{1}{2}k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k^{2} + ck\mathbf{x}_{t} \quad \mathbf{u}_{t}k^{2} \quad ck\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}$$

$$1 + \frac{4c}{\lambda} \quad f_{t}(\mathbf{x}_{t}) + \frac{\gamma}{2}k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k^{2} + \frac{4c}{\lambda}f_{t}(\mathbf{u}_{t}) \quad ck\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}$$

$$(^{30)} \quad 1 + \frac{4c}{\lambda} \quad f_{t}(\mathbf{u}_{t}) + \frac{\gamma}{2}k\mathbf{u}_{t} \quad \mathbf{x}_{t-1}k^{2} \quad \frac{\gamma}{2}k\mathbf{u}_{t} \quad \mathbf{x}_{t}k^{2} + \frac{4c}{\lambda}f_{t}(\mathbf{u}_{t}) \quad ck\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}$$

$$= \quad 1 + \frac{8c}{\lambda} \quad f_{t}(\mathbf{u}_{t}) + \frac{\gamma(\lambda + 4c)}{2\lambda}k\mathbf{u}_{t} \quad \mathbf{x}_{t-1}k^{2} \quad \frac{\gamma(\lambda + 4c)}{2\lambda}k\mathbf{u}_{t} \quad \mathbf{x}_{t}k^{2} \quad ck\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}.$$

Summing over all the iterations and assuming $\mathbf{x}_0 = \mathbf{u}_0$, we have

$$\frac{\mathscr{K}}{t=1} f_{t}(\mathbf{x}_{t}) + \frac{1}{2}k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k^{2} + ck\mathbf{x}_{T} \quad \mathbf{u}_{T}k^{2}$$

$$1 + \frac{8c}{\lambda} \quad \frac{\mathscr{K}}{t=1} f_{t}(\mathbf{u}_{t}) + \frac{\gamma(\lambda + 4c)}{2\lambda} \stackrel{\mathscr{K}}{\underset{t=1}{\to}} k\mathbf{u}_{t} \quad \mathbf{x}_{t-1}k^{2}$$

$$\frac{\gamma(\lambda + 4c)}{2\lambda} \stackrel{\mathscr{K}}{\underset{t=1}{\to}} k\mathbf{u}_{t} \quad \mathbf{x}_{t}k^{2} \quad c \stackrel{\mathscr{K}}{\underset{t=1}{\to}} k\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}$$

$$1 + \frac{8c}{\lambda} \quad \stackrel{\mathscr{K}}{\underset{t=1}{\to}} f_{t}(\mathbf{u}_{t}) + \frac{\gamma(\lambda + 4c)}{2\lambda} \stackrel{\mathscr{K}}{\underset{t=1}{\to}} k\mathbf{u}_{t} \quad \mathbf{x}_{t-1}k^{2} \quad \frac{\gamma(\lambda + 4c)}{2\lambda} + c \quad \stackrel{\mathscr{K}}{\underset{t=1}{\to}} k\mathbf{x}_{t-1} \quad \mathbf{u}_{t-1}k^{2}$$

$$1 + \frac{8c}{\lambda} \quad \stackrel{\mathscr{K}}{\underset{t=1}{\to}} f_{t}(\mathbf{u}_{t}) + \frac{\gamma(\lambda + 4c)}{2\lambda} \stackrel{\mathscr{K}}{\underset{t=1}{\to}} k\mathbf{u}_{t} \quad \mathbf{x}_{t-1}k^{2}$$

$$\frac{\gamma(\lambda + 4c)}{2\lambda} + c \quad \stackrel{\mathscr{K}}{\underset{t=1}{\to}} \frac{1}{1 + \rho}k\mathbf{x}_{t-1} \quad \mathbf{u}_{t}k^{2} \quad \frac{1}{\rho}k\mathbf{u}_{t} \quad \mathbf{u}_{t-1}k^{2}$$

$$1 + \frac{8c}{\lambda} \quad \stackrel{\mathscr{K}}{\underset{t=1}{\to}} f_{t}(\mathbf{u}_{t}) + \frac{\gamma(\lambda + 4c)}{2\lambda} + c \quad \frac{1}{\rho} \stackrel{\mathscr{K}}{\underset{t=1}{\to}} k\mathbf{u}_{t} \quad \mathbf{u}_{t-1}k^{2}$$

$$\max \quad 1 + \frac{8c}{\lambda}, \quad \frac{\gamma(\lambda + 4c)}{2\lambda} + c \quad \frac{2}{\rho} \quad \stackrel{\mathscr{K}}{\underset{t=1}{\to}} f_{t}(\mathbf{u}_{t}) + \frac{1}{2}k\mathbf{u}_{t} \quad \mathbf{u}_{t-1}k^{2}$$

where in the penultimate inequality we assume

$$\frac{\gamma(\lambda+4c)}{2\lambda} \qquad \frac{\gamma(\lambda+4c)}{2\lambda} + c \quad \frac{1}{1+\rho} , \quad \frac{\gamma(\lambda+4c)}{2\lambda} \quad \frac{c}{\rho}.$$
 (32)

Next, we minimize the competitive ratio under the constraints in (31) and (32), which can be summarized as

$$\frac{\lambda}{\lambda+4c} \quad \gamma = \frac{\lambda}{\lambda+4c} \frac{2c}{\rho}.$$

We first set $c = \frac{\rho}{2}$ and $\gamma = \frac{\lambda}{\lambda + 4c}$, and obtain

$$\underbrace{\not X}_{t=1} f_t(\mathbf{x}_t) + \frac{1}{2}k\mathbf{x}_t \quad \mathbf{x}_{t-1}k^2 \qquad \max \quad 1 + \frac{4\rho}{\lambda}, 1 + \frac{1}{\rho} \quad \underbrace{\not X}_{t=1} f_t(\mathbf{u}_t) + \frac{1}{2}k\mathbf{u}_t \quad \mathbf{u}_{t-1}k^2 \quad .$$

Then, we set

$$1+\frac{4\rho}{\lambda}=1+\frac{1}{\rho}\,\,)\ \, \rho=\frac{\rho_{\overline{\lambda}}}{2}.$$

As a result, the competitive ratio is

$$1+\frac{1}{\rho}=1+\frac{2}{\overline{\lambda}},$$

and the parameter is

$$\gamma = \frac{\lambda}{\lambda + 4c} = \frac{\lambda}{\lambda + 2\rho} = \frac{\lambda}{\lambda + \rho}\overline{\lambda}.$$

A.4 Proof of Theorem 4

The analysis is similar to the proof of Theorem 3 of Zhang et al. [2018a]. In the analysis, we need to specify the behavior of the meta-algorithm and expert-algorithm at t = 0. To simplify the presentation, we set

$$\mathbf{x}_0 = 0, \text{ and } \mathbf{x}_0^{\eta} = 0, \ \beta \eta \ 2 \ H.$$
 (33)

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts simultaneously.

Lemma 1 Under Assumptions 2 and 3, and setting $\frac{2}{(2G+1)D} = \frac{2}{\frac{2}{5T}}$, we have

for each $\eta 2 H$.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence $u_0, u_1, \ldots, u_T \ 2 \ X$.

Lemma 2 Under Assumptions 2 and 3, we have

$$\overset{\mathcal{H}}{\underset{t=1}{\overset{}}} s_t(\mathbf{x}_t^{\eta}) + k \mathbf{x}_t^{\eta} \quad \mathbf{x}_{t-1}^{\eta} k \qquad \overset{\mathcal{H}}{\underset{t=1}{\overset{}}} s_t(\mathbf{u}_t) \qquad \frac{D^2}{2\eta} + \frac{D}{\eta} \overset{\mathcal{H}}{\underset{t=1}{\overset{}}} k \mathbf{u}_t \quad \mathbf{u}_{t-1} k + \eta T \quad \frac{G^2}{2} + G \quad . (35)$$

Then, we show that for any sequence of comparators $\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_T \ 2 \ X$ there exists an $\eta_k \ 2 \ H$ such that the R.H.S. of (35) is almost minimal. If we minimize the R.H.S. of (35) exactly, the optimal step size is

$$\eta (P_T) = \frac{D^2 + 2DP_T}{T(G^2 + 2G)}.$$
(36)

From Assumption 3, we have the following bound of the path-length

$$0 \quad P_T = \bigvee_{t=1}^{\mathcal{H}} k \mathbf{u}_t \quad \mathbf{u}_{t-1} k \bigvee_{t=1}^{(12)} TD.$$
(37)

Thus

$$S = \frac{D^2}{T(G^2 + 2G)}$$
 $\eta (P_T)$ $S = \frac{D^2 + 2TD^2}{T(G^2 + 2G)}$

From our construction of H in (17), it is easy to verify that

min
$$H = \frac{S}{\frac{D^2}{T(G^2 + 2G)}}$$
, and max $H = \frac{S}{\frac{D^2 + 2TD^2}{T(G^2 + 2G)}}$.

As a result, for any possible value of P_T , there exists a step size $\eta_k \ 2 \ H$ with k defined in (19), such that

$$\eta_k = 2^{k-1} \quad \frac{D^2}{T(G^2 + 2G)} \quad \eta \ (P_T) \quad 2\eta_k.$$
(38)

Plugging η_k into (35), the dynamic regret with switching cost of expert E^{η_k} is given by

$$\overset{\mathcal{A}}{\underset{t=1}{\overset{s_{t}(\mathbf{x}_{t}^{\eta_{k}}) + k\mathbf{x}_{t}^{\eta_{k}} \mathbf{x}_{t}^{\eta_{k}} \mathbf{x}_{t}^{$$

From (13), we know the initial weight of expert E^{η_k} is

$$w_1^{\eta_k} = \frac{C}{k(k+1)} + \frac{1}{k(k+1)} + \frac{1}{(k+1)^2}.$$

Combining with (34), we obtain the relative performance of the meta-algorithm w.r.t. expert E^{η_k} :

$$\overset{\mathcal{H}}{\underset{t=1}{\overset{s_t(\mathbf{x}_t)+k\mathbf{x}_t}{\overset{\mathbf{x}_{t-1}k}{\overset{t=1}{\overset{t}}{\overset{t=1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t=1}{\overset{t=1}{\overset{t=1}{\overset{t=1}{\overset{t=1}{\overset{t=1}{\overset{t}{1}{\overset{t=1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{\overset{t}{1}{1}{\overset{t}{1$$

From (39) and (40), we derive the following upper bound for dynamic regret with switching cost

Finally, from Assumption 1, we have

$$f_t(\mathbf{x}_t) \quad f_t(\mathbf{u}_t) \quad h \cap f_t(\mathbf{x}_t), \mathbf{x}_t \quad \mathbf{u}_t i \stackrel{(16)}{=} s_t(\mathbf{x}_t) \quad s_t(\mathbf{u}_t).$$
(42)

.....

We complete the proof by combining (41) and (42).

A.5 Proof of Theorem 5

The analysis is similar to that of Theorem 4. The difference is that we need to take into account the lookahead property of the meta-algorithm and the expert-algorithm.

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts simultaneously.

Lemma 3 Under Assumption 3, and setting $=\frac{1}{D} = \frac{1}{T}$, we have

for each $\eta 2 H$.

Combining Lemma 3 with Assumption 1, we have

for each $\eta 2 H$.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence $u_0, u_1, \ldots, u_T \ 2 \ X$.

Lemma 4 Under Assumptions 1 and 3, we have

t (37),

The rest of the proof is almost identical to that of Theorem 4. We will show that for any sequence of comparators $\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_T \ 2 \ X$ there exists an $\eta_k \ 2 \ H$ such that the R.H.S. of (45) is almost minimal. If we minimize the R.H.S. of (45) exactly, the optimal step size is

$$\eta (P_T) = \frac{\overline{D^2 + 2DP_T}}{T}.$$
(46)

From (37), we know that

$$\Gamma \frac{\overline{D^2}}{T} \quad \eta \ (P_T) \quad \Gamma \frac{\overline{D^2 + 2TD^2}}{T}$$

From our construction of H in (22), it is easy to verify that

min
$$H = \int \frac{\overline{D^2}}{T}$$
, and max $H \int \frac{\overline{D^2 + 2TD^2}}{T}$.

As a result, for any possible value of P_T , there exists a step size $\eta_k \ge H$ with k Defined in (19), such

T

D

- 1. the sum of the hitting cost and the switching $\cos t$ is at least $\frac{3\gamma d}{4} = \frac{3D^{D}\overline{d}}{8}$; 2. there exist a xed point whose hitting cost i8.

We consider two cases: $\tau < D$ and τ D. When $\tau < D$, from Lemma 5 with d = T, we know that the dynamic regret with switching cost w.r.t. a fixed point **u** is at least $(D^{\overline{T}})$.

Next, we consider the case τ D. Without loss of generality, we assume $b\tau/Dc$ divides T. Then, we partition T into $b\tau/Dc$ successive stages, each of which contains $T/b\tau/Dc$ rounds. Applying Lemma 5 to each stage, we conclude that there exists a sequence of convex functions $f_1(), \ldots, f_T()$ over the domain $\begin{bmatrix} 2 & \overline{d} \\ 2 & \overline{d} \end{bmatrix}^d$ where $d = T/b\tau/Dc$ in the lookahead setting such that

1. the sum of the hitting cost and the switching cost of any online algorithm is at least

$$b\tau/Dc \quad \frac{3D}{8} \stackrel{\circ}{\frac{T}{b\tau/Dc}} = \frac{3D}{8} \stackrel{\circ}{\frac{T}{T}} \frac{\tau}{D} \stackrel{\star}{\tau} = (\stackrel{O}{\frac{T}{T}} \frac{\tau}{T});$$

2. there exists a sequence of points u_1, \ldots, u_T whose hitting cost is 0 and switching cost (i.e., path-length) is at most

$$D \frac{\tau}{D} \tau^{K} \tau$$

since they switch at most $b\tau/Dc$ 1 times.

Thus, the dynamic regret with switching cost w.r.t. $\mathbf{u}_1, \ldots, \mathbf{u}_T$ is at least

$$\frac{3D}{8} \stackrel{\prime}{T} \frac{\tau}{D} \stackrel{\prime}{\tau} \tau = (\stackrel{\prime D}{T} \overline{D} \tau).$$

We complete the proof by combining the results of the above two cases.

B **Proof of supporting lemmas**

We provide the proof of all the supporting lemmas.

B.1 Proof of Lemma 1

Based on the prediction rule of the meta-algorithm, we upper bound the switching cost when t = 2as follows:

$$k\mathbf{x}_{t} \quad \mathbf{x}_{t-1}k = \begin{pmatrix} X \\ \eta_{2H} \end{pmatrix} \begin{pmatrix} X \\ \eta_{2H} \end{pmatrix} \begin{pmatrix} X \\ \eta_{2H} \end{pmatrix} \begin{pmatrix} W \\ \eta_{2H} \end{pmatrix} \begin{pmatrix} W \\ \eta_{2H} \end{pmatrix} \begin{pmatrix} W \\ \eta_{2H} \end{pmatrix} \begin{pmatrix} X \\ \eta_$$

where **x** is an arbitrary point in X, and $\mathbf{w}_t = (w_t^{\eta})_{\eta \geq H} \geq \mathbf{R}^N$. When t = 1, from (33), we have

$$k\mathbf{x}_{1} \quad \mathbf{x}_{0}k = k\mathbf{x}_{1}k = \begin{pmatrix} X & X \\ \eta_{2H} & \eta_{1} \end{pmatrix} \begin{pmatrix} X & X \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{1} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} X & \eta_{2H} & \eta_{2H} \\ \eta_{2H} & \eta_{2H} \end{pmatrix}$$

Then, the relative loss of the meta-algorithm w.r.t. expert E^{η} can be decomposed as

We proceed to bound A and $k\mathbf{w}_t = \mathbf{w}_{t-1}k_1$ in (52). Notice that A is the regret of the meta-algorithm w.r.t. expert E^{η} . From Assumptions 2 and 3, we have

jhr
$$f_t(\mathbf{x}_t), \mathbf{x}_t^{\eta} = \mathbf{x}_t i j$$
 kr $f_t(\mathbf{x}_t) k k \mathbf{x}_t^{\eta} = \mathbf{x}_t k^{(11),(12)} GD.$

Thus, we have

$$GD \quad \ell_t(\mathbf{x}_t^{\eta}) \quad (G+1)D, \ \delta\eta \ 2 \ H.$$
(53)

According to the standard analysis of Hedge [Zhang et al., 2018a, Lemma 1] and (53), we have

$$\overset{\text{A}}{=} \underset{\eta 2 H}{\overset{\text{}}{=}} w_t^{\eta} \ell_t(\mathbf{x}_t^{\eta}) \quad \ell_t(\mathbf{x}_t^{\eta})^{\text{A}} \quad \frac{1}{\beta} \ln \frac{1}{w_1^{\eta}} + \frac{\beta T (2G+1)^2 D^2}{8}.$$
 (54)

Next, we bound $k\mathbf{W}_t = \mathbf{W}_{t-1}k_1$, which measures the stability of the meta-algorithm, i.e., the change of coefficients between successive rounds. Because the Hedge algorithm is translation invariant, we can subtract D/2 from $\ell_t(\mathbf{x}_t^{\eta})$ such that

$$j\ell_t(\mathbf{x}_t^{\eta}) = D/2j \quad (G+1/2)D, \ \beta\eta \ 2 \ H.$$
 (55)

It is well-known that Hedge can be treated as a special case of "Follow-the-Regularized-Leader" with entropic regularization [Shalev-Shwartz, 2011]

$$R(\mathbf{w}) = \bigwedge_{i}^{n} w_i \log w_i$$

over the probability simplex, and R() is 1-strongly convex w.r.t. the ℓ_1 -norm. In other words, we have * +

$$\mathbf{w}_{t+1} = \underset{\mathbf{w},2}{\operatorname{argmin}} \qquad \frac{1}{\beta} \log(\mathbf{w}_1) + \underset{i=1}{\overset{\checkmark}{\atop}} \mathbf{g}_i, \mathbf{w} + \frac{1}{\beta} R(\mathbf{w}), \ \delta t = 1$$

 R^N is the probability simplex, and $\mathbf{g}_i = [\ell_i(\mathbf{x}_i^{\eta}) \quad D/2]_{\eta \geq H} \geq \mathsf{R}^N$. From the stability where property of Follow-the-Regularized-Leader [Duchi et al., 2012, Lemma 2], we have

$$k\mathbf{w}_{t} \quad \mathbf{w}_{t-1}k_{1} \quad \beta k\mathbf{g}_{t-1}k_{1} \quad \stackrel{(55)}{\longrightarrow} \beta(G+1/2)D, \ \mathcal{S}t \quad 2.$$

$$\times \mathcal{K}_{k\mathbf{w}_{t}} \quad \mathbf{w}_{t-1}k_{1} \quad \frac{\beta(T-1)(2G+1)D}{2}.$$
(56)

Then

$$\bigwedge_{t=2}^{\mathcal{R}} k \mathbf{w}_t \quad \mathbf{w}_{t-1} k_1 \quad \frac{\beta (T-1)(2G+1)D}{2}.$$
 (5)

Substituting (54) and (56) into (52), we have

$$\overset{\mathcal{H}}{\underset{t=1}{\overset{t=1}{\beta} \ln \frac{1}{w_{1}^{\eta}} + \frac{\beta T (2G+1)^{2} D^{2}}{8} + \frac{\beta (T-1) (2G+1) D^{2}}{2}}_{t=1} \frac{1}{\beta} \ln \frac{1}{w_{1}^{\eta}} + \frac{\beta T (2G+1)^{2} D^{2}}{8} + \frac{\beta (T-1) (2G+1) D^{2}}{2} \frac{1}{\beta} \ln \frac{1}{w_{1}^{\eta}} + \frac{5\beta T (2G+1)^{2} D^{2}}{8}.$$
complete the proof by setting $\beta = \frac{2}{12} \frac{Q}{2} \frac{Q}{2}}{2}$

We complete the proof by setting β (2G+1)D $\overline{5T}$.

B.2 Proof of Lemma 2

First, we bound the dynamic regret of the expert-algorithm. Define

$$\mathbf{x}_{t+1}^{\eta} = \mathbf{x}_{t}^{\eta} \quad \eta \cap f_{t}(\mathbf{x}_{t})$$

Following the analysis of Ader [Zhang et al., 2018a, Theorems 1 and 6], we have

$$\begin{split} s_{t}(\mathbf{x}_{t}^{\eta}) & s_{t}(\mathbf{u}_{t}) \stackrel{(16)}{=} hr f_{t}(\mathbf{x}_{t}), \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}i = \frac{1}{\eta}h\mathbf{x}_{t}^{\eta} \quad \mathbf{x}_{t+1}^{\eta}, \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}i \\ &= \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} + k\mathbf{x}_{t}^{\eta} \quad \mathbf{x}_{t+1}^{\eta}k_{2}^{2} \\ &= \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} + \frac{\eta}{2}kr f_{t}(\mathbf{x}_{t})k_{2}^{2} \\ \stackrel{(11)}{=} \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} + \frac{\eta}{2}G^{2} \\ &= \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} + \frac{\eta}{2}G^{2} \\ &= \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k_{2}^{2} + k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} + \frac{\eta}{2}G^{2} \\ &= \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k_{2}^{2} + (\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1} + \mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t})^{>}(\mathbf{u}_{t} \quad \mathbf{u}_{t+1}) + \frac{\eta}{2}G^{2} \\ &= \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k_{2}^{2} + k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k + k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t}k \quad \mathbf{u}_{t+1}k + \frac{\eta}{2}G^{2} \\ &= \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k_{2}^{2} + k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k + k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t}k \quad \mathbf{u}_{t+1}k + \frac{\eta}{2}G^{2} \\ &= \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k_{2}^{2} + k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k + k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t}k \quad \mathbf{u}_{t+1}k + \frac{\eta}{2}G^{2} \\ &= \frac{1}{2\eta} \quad k\mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t}k_{2}^{2} \quad k\mathbf{x}_{t+1}^{\eta} \quad \mathbf{u}_{t+1}k_{2}^{2} + \frac{\eta}{\eta}k\mathbf{u}_{t} \quad \mathbf{u}_{t+1}k + \frac{\eta}{2}G^{2}. \end{split}$$

Summing the above inequality over all iterations, we have

$$\overset{\mathscr{K}}{\underset{t=1}{\overset{(s_{t}(\mathbf{x}_{t}^{\eta}) \quad s_{t}(\mathbf{u}_{t}))}{\overset{(12)}{=} \frac{1}{2\eta} k \mathbf{x}_{1}^{\eta} \quad \mathbf{u}_{1} k_{2}^{2} + \frac{D}{\eta} \overset{\mathscr{K}}{\underset{t=1}{\overset{(12)}{=} \frac{1}{2\eta} D^{2}} + \frac{D}{\eta} \overset{\mathscr{K}}{\underset{t=1}{\overset{(12)}{=} \frac{1}{\eta} D^{2}} + \frac{D}{\eta} \overset{\mathscr{K}}{\underset{t=1}{\overset{(1$$

Since (57) holds when $\mathbf{u}_{T+1} = \mathbf{u}_T$, we have

$$\overset{\mathcal{H}}{\underset{t=1}{\longrightarrow}} (s_t(\mathbf{x}_t^{\eta}) \quad s_t(\mathbf{u}_t)) \quad \frac{1}{2\eta} D^2 + \frac{D}{\eta} \overset{\mathcal{H}}{\underset{t=1}{\longrightarrow}} k\mathbf{u}_t \quad \mathbf{u}_{t-1}k + \frac{\eta T}{2} G^2.$$
(58)

Next, we bound the switching cost of the expert-algorithm. To this end, we have

$$\overset{\mathcal{K}}{\underset{t=1}{\overset{\mathsf{x}}}} k \overset{\mathfrak{x}}{\underset{t=0}{\overset{\mathfrak{n}}}} \overset{\mathfrak{X}}{\underset{t=0}{\overset{\mathsf{x}}}} \overset{1}{\underset{t=0}{\overset{\mathsf{x}}}} k \overset{\mathfrak{X}}{\underset{t=0}{\overset{\mathfrak{n}}}} \overset{1}{\underset{t=0}{\overset{\mathsf{x}}}} k \overset{\mathfrak{X}}{\underset{t=0}{\overset{\mathfrak{n}}}} \overset{1}{\underset{t=0}{\overset{\mathsf{x}}}} \overset{\mathfrak{X}}{\underset{t=0}{\overset{\mathsf{n}}}} \overset{1}{\underset{t=0}{\overset{\mathsf{x}}}} k \eta \vdash f_t(\overset{\mathfrak{x}}{\underset{t}}) k \overset{(11)}{\underset{t=0}{\overset{\mathsf{n}}}} \eta T G.$$
(59)

We complete the proof by combining (58) with (59).

B.3 Proof of Lemma 3

We reuse the first part of the proof of Lemma 1, and start from (52). To bound A, we need to analyze the behavior of the lookahead Hedge. To this end, we prove the following lemma.

Lemma 6 The meta-algorithm in Algorithm 3 satis es \bigcirc

$$\overset{\mathcal{K}}{=} \overset{\mathcal{K}}{\underset{t=1}{\otimes}} w_t^{\eta} \ell_t(\mathbf{x}_t^{\eta}) = \ell_t(\mathbf{x}_t^{\eta})^{A} = \frac{1}{\beta} \ln \frac{1}{w_0^{\eta}} = \frac{1}{2\beta} \overset{\mathcal{K}}{\underset{t=1}{\otimes}} k \mathbf{w}_t = \mathbf{w}_{t-1} k_1^2$$
(60)

for any $\eta 2 H$.

Substituting (60) into (52), we have

where we set

B.4 Proof of Lemma 6

To simplify the notation, we define

$$W_{0} = \bigvee_{\eta 2 H}^{\chi} w_{0}^{\eta} = 1, \ L_{t}^{\eta} = \bigvee_{i=1}^{\chi} \ell_{i}(\mathbf{x}_{i}^{\eta}), \text{ and } W_{t} = \bigvee_{\eta 2 H}^{\chi} w_{0}^{\eta} e^{-\beta L_{t}}, \ \delta t = 1.$$

From the updating rule in (20), it is easy to verify that

$$w_t^{\eta} = \frac{w_0^{\eta} e^{-\beta L_t}}{W_t}, \ \delta t = 1.$$
 (62)

First, we have

$$\int_{\Pi} W_{T} = \ln \frac{\omega}{w_{0}^{\eta} e^{-\beta L_{T}}} A = \ln \max_{\eta \geq H} w_{0}^{\eta} e^{-\beta L_{T}} = \beta \min_{\eta \geq H} L_{T}^{\eta} + \frac{1}{\beta} \ln \frac{1}{w_{0}^{\eta}} .$$
(63)

Next, we bound the related quantity $\ln(W_t/W_{t-1})$ as follows. For any $\eta \ge H$, we have

$$\ln \frac{W_t}{W_{t-1}} \stackrel{(62)}{=} \ln \frac{w_0^{\eta} e^{-\beta L_t}}{w_t^{\eta}} \frac{w_t^{\eta}}{w_0^{\eta} e^{-\beta L_{t-1}}} = \ln \frac{w_t^{\eta}}{w_t^{\eta}} \quad \beta \ell_t(\mathbf{x}_t^{\eta}).$$
(64)

Then, we have

$$\ln \frac{W_t}{W_{t-1}} = \ln \frac{W_t}{W_{t-1}} \overset{\times}{\underset{\eta 2H}{}} w_t^{\eta} = \overset{\times}{\underset{\eta 2H}{}} w_t^{\eta} \ln \frac{W_t}{W_{t-1}}$$

$$\stackrel{(64)}{\underset{\eta 2H}{}} \overset{\times}{\underset{\eta 2H}{}} w_t^{\eta} \ln \frac{w_{t-1}}{w_t^{\eta}} \overset{\times}{\underset{\eta 2H}{}} \overset{\times}{\underset{\eta 2H}{}} w_t^{\eta} \ell_t(\mathbf{x}_t^{\eta}) = \frac{1}{2} k w_t w_t \cdot u_{t-1} k_1^2 \overset{\times}{\underset{\eta 2H}{}} w_t^{\eta} \ell_t(\mathbf{x}_t^{\eta})$$

$$(65)$$

where the last inequality is due to Pinsker's inequality [Cover and Thomas, 2006, Lemma 11.6.1]. Thus

$$\ln W_T = \ln W_0 + \underbrace{\overset{\mathscr{K}}{\underset{t=1}{\overset{t=1}{\overset{t=1}{\overset{t=1}{\overset{(65)}{\overset{\mathscr{K}}{\underset{t=1}{\overset{(65)}{\overset{\mathscr{K}}{\underset{t=1}{\overset{(65)}{\overset{\mathscr{K}}{\underset{t=1}{\overset{t}{1}{\overset{t=1}{\overset{t=1}{\overset{t}{1}{\overset{t=1}{\overset{t}{1}{\overset{t}1}{\overset{t=1}{\overset{t}{1}{\overset{t}{1}{\overset{t}1}{\overset{t}{1}{\overset{t}$$

Combining (63) with (66), we obtain

$$\beta \min_{\eta 2 \mathcal{H}} L_T^{\eta} + \frac{1}{\beta} \ln \frac{1}{w_0^{\eta}} \qquad \overset{\bigcirc}{\underset{t=1}{\overset{\times}{\longrightarrow}}} \frac{1}{2} k \mathbf{w}_t \quad \mathbf{w}_{t-1} k_1^2 \quad \beta \underset{\eta 2 \mathcal{H}}{\overset{\times}{\longrightarrow}} w_t^{\eta} \ell_t(\mathbf{x}_t^{\eta}) \mathbf{A}$$

We complete the proof by rearranging the above inequality.

B.5 Proof of Lemma 4

The analysis is similar to that of Theorem 10 of Chen et al. [2018], which relies on a strong condition

$$\mathbf{x}_t^{\eta} = \mathbf{x}_{t-1}^{\eta} \quad \eta \cap f_t(\mathbf{x}_t^{\eta})$$

Note that the above equation is essentially the vanishing gradient condition of \mathbf{x}_t^{η} when (21) is unconstrained. In contrast, we only make use of the first-order optimality criterion of \mathbf{x}_t^{η} [Boyd and Vandenberghe, 2004], i.e.,

$$\Gamma f_t(\mathbf{x}_t^{\eta}) + \frac{1}{\eta} (\mathbf{x}_t^{\eta} \quad \mathbf{x}_{t-1}^{\eta}), \mathbf{y} \quad \mathbf{x}_t^{\eta} \quad 0, \ \delta \mathbf{y} \ 2 \ X$$
(67)

which is much weaker.

From the convexity of $f_t()$, we have

$$\begin{aligned} & \int_{t} (\mathbf{x}_{t}^{\eta}) \quad f_{t}(\mathbf{u}_{t}) \\ & & h \cap f_{t}(\mathbf{x}_{t}^{\eta}), \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t} i \end{aligned}$$

$$& \stackrel{(67)}{=} \frac{1}{\eta} h \mathbf{x}_{t}^{\eta} \quad \mathbf{x}_{t-1}^{\eta}, \mathbf{u}_{t} \quad \mathbf{x}_{t}^{\eta} i = \frac{1}{2\eta} k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t} k^{2} + k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t} k^{2} \quad k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{x}_{t-1} k^{2} \\ & = \frac{1}{2\eta} k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t} k^{2} + h \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t} + \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} \mathbf{u}_{t-1} \mathbf{u}_{t-1} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{x}_{t-1} k^{2} \\ & = \frac{1}{2\eta} k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t} k^{2} + k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t} + \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} \mathbf{u}_{t-1} \mathbf{u}_{t-1} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{x}_{t-1} k^{2} \\ & = \frac{1}{2\eta} k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t} k^{2} + k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t} k + k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} \mathbf{u}_{t-1} \mathbf{u}_{t-1} k^{2} \\ & = \frac{1}{2\eta} k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t} k^{2} + k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t} k + k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} \mathbf{u}_{t-1} k \quad \mathbf{u}_{t-1} k^{2} \\ & = \frac{1}{2\eta} k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t} k^{2} + \frac{D}{\eta} k \mathbf{u}_{t-1} \mathbf{u}_{t-1} k \quad \mathbf{u}_{t-1} k \quad \mathbf{u}_{t-1} k \quad \mathbf{u}_{t-1} k \\ & = \frac{1}{2\eta} k \mathbf{x}_{t-1}^{\eta} \quad \mathbf{u}_{t-1} k^{2} \quad k \mathbf{x}_{t}^{\eta} \quad \mathbf{u}_{t} k^{2} + \frac{D}{\eta} k \mathbf{u}_{t-1} \mathbf{u}_{t-1} k \quad \frac{1}{2\eta} k \mathbf{x}_{t}^{\eta} \quad \mathbf{x}_{t-1}^{\eta} k^{2}. \end{aligned}$$

Summing the above inequality over all iterations, we have

$$\overset{\mathcal{H}}{\underset{t=1}{\overset{(12)}{=}}} (f_{t}(\mathbf{x}_{t}^{\eta}) - f_{t}(\mathbf{u}_{t})) - \frac{1}{2\eta} k \mathbf{x}_{0}^{\eta} - \mathbf{u}_{0} k_{2}^{2} + \frac{D}{\eta} \overset{\mathcal{H}}{\underset{t=1}{\overset{(12)}{=}}} k \mathbf{u}_{t} - \mathbf{u}_{t} k \mathbf{u}_{t} - \mathbf{u}_{t} k - \frac{1}{2\eta} \overset{\mathcal{H}}{\underset{t=1}{\overset{(12)}{=}}} k \mathbf{x}_{t}^{\eta} - \mathbf{x}_{t}^{\eta} k^{2} \\
\overset{(12)}{\overset{(12)}{=}} \frac{1}{2\eta} D^{2} + \frac{D}{\eta} \overset{\mathcal{H}}{\underset{t=1}{\overset{(12)}{=}}} k \mathbf{u}_{t} - \mathbf{u}_{t} k - \frac{1}{2\eta} \overset{\mathcal{H}}{\underset{t=1}{\overset{(12)}{=}}} k \mathbf{x}_{t}^{\eta} - \mathbf{x}_{t}^{\eta} k^{2}.$$
(68)

Then, the dynamic regret with switching cost can be upper bounded as follows

$$\overset{\mathscr{A}}{\underset{t=1}{\overset{t}{1}{\overset{t}1}{\overset{t}{\atopt}{\atop1}}\overset{t}{\atop1}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}{1}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}{1}}{\overset{t}}{\overset{t}}{\overset{t}{1}}{\overset{t}}{\overset{t}}{\overset{t}{1}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}{1}}{\overset{t}}{\overset{t}}{\overset{t}{1}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}{\overset{t}}}{\overset{$$