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Abstract

Error bound conditions (EBC) are properties that characterize the growth of an
objective function when a point is moved away from the optimal set. They have
recently received increasing attention for developing optimization algorithms with
fast convergence. However, the studies of EBC in statistical learning are hitherto
still limited. The main contributions of this paper are two-fold. First, we develop
fast and intermediate rates of empirical risk minimization (ERM) under EBC
for risk minimization with Lipschitz continuous, and smooth convex random
functions. Second, we establish fast and intermediate rates of an efficient stochastic
approximation (SA) algorithm for risk minimization with Lipschitz continuous
random functions, which requires only one pass of n samples and adapts to EBC.
For both approaches, the convergence rates span a full spectrum between eO(1/

p
n)

and eO(1/n) depending on the power constant in EBC, and could be even faster
than O(1/n) in special cases for ERM. Moreover, these convergence rates are
automatically adaptive without using any knowledge of EBC.

1 Introduction

In this paper, we focus on the following stochastic convex optimization problems arising in statistical
learning and many other fields:

min
w∈W

P (w) , Ez∼P[f(w, z)], (1)

and more generally
min

w∈W
P (w) , Ez∼P[f(w, z)] + r(w), (2)

where f(�, z) : W ! R is a random function depending on a random variable z 2 Z that follows
a distribution P, r(w) is a lower semi-continuous convex function. In statistical learning [48], the
problem above is also referred to as risk minimization where z is interpreted as data, w is interpreted
as a model (or hypothesis), f(�, �) is interpreted as a loss function, and r(�) is a regularization. For
example, in supervised learning one can take z = (x, y) - a pair of feature vector x 2 X � Rd
and label y 2 Y , f(w, z) = `(w(x), y) - a loss function measuring the error of the prediction
w(x) : X ! Y made by the model w. Nonetheless, we emphasize that the risk minimization
problem (1) is more general than supervised learning and could be more challenging (c.f. [35]). In
this paper, we assume thatW � Rd is a compact and convex set. LetW∗ = arg minw∈W P (w)
denote the optimal set and P∗ = minw∈W P (w) denote the optimal risk.

There are two popular approaches for solving the risk minimization problem. The first one is by
empirical risk minimization that minimizes the empirical risk defined over a set of n i.i.d. samples
drawn from the same distribution P (sometimes with a regularization term on the model). The second
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approach is called stochastic approximation that iteratively learns the model from random samples
zt � P, t = 1, . . . , n. Both approaches have been studied broadly and extensive results are available
about the theoretical guarantee of the two approaches in the machine learning and optimization
community. A central theme in these studies is to bound the excess risk (or optimization error) of a
learned model bw measured by P (bw)� P∗, i.e., given a set of n samples (z1, . . . , zn) how fast the
learned model converges to the optimal model in terms of the excess risk.

A classical result about the excess risk bound for the considered risk minimization problem is in the
order of eO(

p
d/n) 1 and O(

p
1/n) for ERM and SA, respectively, under appropriate conditions of

the loss functions (e.g., Lipschitz continuity, convexity) [29, 35]. Various studies have attempted to
establish faster rates by imposing additional conditions on the loss functions (e.g., strong convexity,
smoothness, exponential concavity) [13, 42, 21], or on both the loss functions and the distribution
(e.g., Tsybakov condition, Bernstein condition, central condition) [45, 3, 46]. In this paper, we will
study a different family of conditions called the error bound conditions (EBC) (see Definition 1),
which has a long history in the community of optimization and variational analysis [31] and recently
revived for developing fast optimization algorithms without strong convexity [4, 6, 17, 28, 54].
However, the exploration of EBC in statistical learning for risk minimization is still under-explored
and the connection to other conditions is not fully understood.
Definition 1. For any w 2 W , let w∗ = arg minu∈W∗ ku�wk2 denote an optimal solution closest
to w, whereW∗ is the set containing all optimal solutions. Let θ 2 (0, 1] and 0 < α < 1. The
problem (1) satisfies an EBC(θ, α) if for any w 2 W , the following inequality holds

kw �w∗k22 � α(P (w)� P (w∗))�. (3)

This condition has been well studied in optimization and variational analysis. Many results are
available for understanding the condition for different problems. For example, it has been shown that
when P (w) is semi-algebraic and continuous, the inequality (3) is known to hold on any compact
set with certain θ 2 (0, 1] and α > 0 [4] 2. We will study both ERM and SA under the above error
bound condition. In particular, we show that the benefits of exploiting EBC in statistical learning are
noticeable and profound by establishing the following results.

� Result I. First, we show that for Lipchitz continous loss EBC implies a relaxed Bernstein con-
dition, and therefore leads to intermediate rates of eO((d/n)

1
2−θ ) for Lipschitz continuous loss.

Although this result does not improve over existing rates based on Bernstein condition, however,
we emphasize that it provides an alternative route for establishing fast rates and brings richer results
than literature to statistical learning in light of the examples provided in this paper.

� Result II. Second, we develop fast and optimistic rates of ERM for non-negative, Lipschitz
continuous and smooth convex loss functions in the order of eO(d/n+ (dP∗/n)

1
2−θ ), and in the

order of eO((d/n)
2

2−θ + (dP∗/n)
1

2−θ ) when the sample size n is sufficiently large, which imply
that when the optimal risk P∗ is small one can achieve a fast rate of eO (d/n) even with θ < 1 and
a faster rate of eO((d/n)

2
2−θ ) when n is sufficiently large.

� Result III. Third, we develop an efficient SA algorithm with almost the same per-iteration cost as
stochastic subgradient methods for Lipschitz continuous loss, which achieves the same order of rateeO((1/n)

1
2−θ ) as ERM without an explicit dependence on d. More importantly it is “parameter”-

free with no need of prior knowledge of θ and α in EBC.

Overall, these results not only strengthen the understanding of ERM for statistical learning but also
bring new fast stochastic algorithms for solving a broad range of statistical learning problems. Before
ending this section, we would like to point out that all the results are automatically adaptive to the
largest possible value of θ 2 (0, 1] in hindsight of the problem, and the dependence on d for ERM is
generally unavoidable according to the lower bounds studied in [9].

2 Related Work

The results for statistical learning under EBC are limited. A similar one to our Result I for ERM was
established in [39]. However, their result requires the convexity condition of random loss functions,

1Õ hides a poly-logarithmic factor of n.
2One may consider θ ∈ (1, 2], which will yield the same order of excess risk bound as θ = 1 in our settings.
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making it weaker than our result. Ramdas and Singh [33] and Xu et al. [50] considered SA under the
EBC condition and established similar adaptive rates. Nonetheless, their stochastic algorithms require
knowing the values of θ and possibly the constant α in the EBC. In contrast, the SA algorithm in
this paper is “parameter"-free without the need of knowing θ and α while still achieving the adaptive
rates of O(1/n2−�). Fast rates under strong convexity (a special case of EBC) are well-known for
ERM, online optimization and SA [35, 43, 13, 16, 36, 14]. In the presence of strong convexity of
P (w), our results of ERM and SA recover known rates (see below for more discussions).

Fast (intermediate) rates of ERM have been studied under various conditions, including Tsybakov
margin condition [44, 25], Bernstein condition [3, 2, 19], exp-concavity condition [21, 11, 26, 51],
mixability condition [27], central condition [46], etc. The Bernstein condition (see Definition 2)
is a generalization of Tsybakov margin condition for classification. The connection between the
exp-concavity condition, the Bernstein condition and the v-central condition was studied in [46].
In particular, the exp-concavity implies a v-central condition under an appropriate condition of
the decision set W (e.g., well-specificity or convexity). With the bounded loss condition, the
Bernstein condition implies the v-central condition and the v-central condition also implies a Bernstein
condition.

In this work, we also study the connection between the EBC and the Bernstein condition and the
v-central condition. In particular, we will develop weaker forms of the Bernstein condition and the
v-central condition from the EBC for Lipschitz continuous loss functions. Building on this connection,
we establish our Result I, which is on a par with existing results for bounded loss functions relying
on the Bernstein condition or the central condition. Nevertheless, we emphasize that employing
the EBC for developing fast rates has noticeable benefits: (i) it is complementary to the Bernstein
condition and the central condition and enjoyed by several interesting problems whose fast rates are
not exhibited yet; (ii) it can be leveraged for developing fast and intermediate optimistic rates for
non-negative and smooth loss functions; (iii) it can be leveraged to develop efficient SA algorithms
with intermediate and fast convergence rates.

Sebro et al. [42] established an optimistic rate of O(1/n +
p
P∗/n) of both ERM and SA for

supervised learning with generalized linear loss functions. However, their SA algorithm requires
knowing the value of P∗. Recently, Zhang et al. [55] considered the general stochastic optimization
problem (1) with non-negative and smooth loss functions and achieved a series of optimistic results.
It is worth mentioning that their excess risk bounds for both convex problems and strongly convex
problems are special cases of our Result II when θ = 0 and θ = 1, respectively. However, the
intermediate optimistic rates for θ 2 (0, 1) are first shown in this paper. Importantly, our Result II
under the EBC with θ = 1 is more general than the result in [55] under strong convexity assumption.

Finally, we discuss about stochastic approximation algorithms with fast and intermediate rates to
understand the significance of our Result III. Different variants of stochastic gradient methods have
been analyzed for stochastic strongly convex optimization [14, 32, 38] with a fast rate ofO(1/n). But
these stochastic algorithms require knowing the strong convexity modulus. A recent work established
adaptive regret bounds O(n

1−θ
2−θ ) for online learning with a total of n rounds under the Bernstein

condition [20]. However, their methods are based on the second-order methods and therefore are not
as efficient as our stochastic approximation algorithm. For example, for online convex optimization
they employed the MetaGrad algorithm [47], which needs to maintain log(n) copies of the online
Newton step (ONS) [13] with different learning rates. Notice that the per-iteration cost of ONS is
usually O(d4) even for very simple domainW [21], while that of our SA algorithm is dominated by
the Euclidean projection ontoW that is as fast as O(d) for a simple domain.

3 Empirical Risk Minimization (ERM)

We first formally state the minimal assumptions that are made throughout the paper. Additional
assumptions will be made in the sequel for developing fast rates for different families of the random
functions f(w, z).
Assumption 1. For the stochastic optimization problems (1) and (2), we assume: (i) P (w) is a
convex function,W is a closed and bounded convex set, i.e., there exists R > 0 such that kwk2 � R
for any w 2 W , and r(w) is a Lipschitz continuous convex function. (ii) the problem (1) and (2)
satisfy an EBC(θ, α), i.e., there exist θ 2 (0, 1] and 0 < α <1 such that the inequality (3) hold.
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In this section, we focus on the development of theory of ERM for risk minimization. In particular,
we learn a model bw by solving the following ERM problem corresponding to (1):

bw 2 arg min
w∈W

Pn(w) ,
1

n

nX
i=1

f(w, zi) (4)

where z1, . . . , zn are i.i.d samples following the distribution P. A similar ERM problem can be
formulated for (2). This section is divided into two subsections. First, we establish intermediate
rates of ERM under EBC when the random function is Lipschitz continuous. Second, we develop
intermediate rates of ERM under EBC when the random function is smooth. In the sequel and the
supplement, we use _ to denote the max operation and use ^ to denote the min operation.

3.1 ERM for Lipschitz continuous random functions

In this subsection, w.l.o.g we restrict our attention to (1) since we make the following assumption
besides Assumption 1. If r(w) is present, it can be absorbed into f(w, z).

Assumption 2. For the stochastic optimization problem (1), we assume that f(w, z) is a G-Lipschitz
continuous function w.r.t w for any z 2 Z .

It is notable that we do not assume f(w, z) is convex in terms of w or any z. First, we compare
EBC with two very important conditions considered in literature for developing fast rates of ERM,
namely the Bernstein condition and the central condition. We first give the definitions of these two
conditions.

Definition 2. (Bernstein Condition) Let β 2 (0, 1] and B � 1. Then (f,P,W) satisfies the (β,B)-
Bernstein condition if there exists a w∗ 2 W such that for any w 2 W

Ez[(f(w, z)� f(w∗, z))2] � B(Ez[f(w, z)� f(w∗, z)])� . (5)

It is clear that if such an w∗ exists it has to be the minimizer of the risk.

Definition 3. (v-Central Condition) Let v : [0,1)! [0,1) be a bounded, non-decreasing function
satisfying v(x) > 0 for all x > 0. We say that (f,P,W) satisfies the v-central condition if for all
ε � 0, there exists w∗ 2 W such that for any w 2 W the following holds with η = v(ε).

Ez∼P

h
e�(f(w∗;z)−f(w;z))

i
� e�". (6)

If v(ε) is a constant for all ε � 0, the v-central condition reduces to the strong η-central condition,
which implies the O(1/n) fast rate [46]. The connection between the Bernstein condition or v-central
condition has been studied in [46]. For example, if the random functions f(w, z) take values in [0, a],
then (β,B)-Bernstein condition implies v-central condition with v(x) / x1−� .

The following lemma shows that for Lipchitz continuous function, EBC condition implies a relaxed
Bernstein condition and a relaxed v-central condition.

Lemma 1. (Relaxed Bernstein condition and v-central condition) Suppose Assumptions 1, 2 hold.
For any w 2 W , there exists w∗ 2 W∗ (which is actually the one closest to w), such that

Ez[(f(w, z)� f(w∗, z))2] � B(Ez[f(w, z)� f(w∗, z)])�,

where B = G2α, and Ez∼P
�
e�(f(w∗;z)−f(w;z))

�
� e�", where η = v(ε) := cε1−� ^ b. Additionally,

for any ε > 0 if P (w)�P (w∗) � ε, we have Ez∼P
�
ev(")(f(w∗;z)−f(w;z))

�
� 1, where b > 0 is any

constant and c = 1/(αG2κ(4GRb)), where κ(x) = (ex � x� 1)/x2.

Remark: There is a subtle difference between the above relaxed Bernstein condition and v-central
condition and their original definitions in Definitions 2 and 3. The difference is that in Definitions 2
and 3, it requires there exists a universal w∗ for all w 2 W such that (5) and (6) hold. In Lemma 1
it only requires for every w 2 W there exists one w∗ that could be different for different w such
that (5) and (6) hold. This relaxation enables us to establish richer results by exploring EBC than the
Bernstein condition and v-central condition, which are postponed to Section 5.

Next, we present the main result of this subsection.
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Theorem 1 (Result I). Suppose Assumptions 1, 2 hold. For any n � aC, with probability at least
1� δ we have

P (bw)� P∗ � O
�
d log n+ log(1/δ)

n

� 1
2−θ

, (7)

where a = 3(d log(32GRn1=(2−�)) + log(1/δ))/c+ 1 and C > 0 is some constant.

Remark: The proof utilizes Lemma 1 and follows similarly as the proofs in previous studies [46, 26]
based on v-central condition. Our analysis essentially shows that relaxed Bernstein condition and
relaxed v-central condition with non-universal w∗ suffice to establish the intermediate rates. Although
the rate in Theorem 1 does not improve that in previous works [46], the relaxation brought by EBC
allows us to establish fast rates for interesting problems that were unknown before. More details are
postponed into Section 5. For example, under the condition that the input data x, y are bounded, ERM
for hinge loss minimization with `1, `∞ norm constraints, and for minimizing a quadratic function
and an `1 norm regularization enjoys an eO(1/n) fast rate. To the best of our knowledge, such a fast
rate of ERM for these problems has not been shown in literature using other conditions or theories.

3.2 ERM for non-negative, Lipschitz continuous and smooth convex random functions

Below we will present improved optimistic rates of ERM for non-negative smooth loss functions
expanding the results in [55]. To be general, we consider (2) and the following ERM problem:

bw 2 arg min
w∈W

Pn(w) ,
1

n

nX
i=1

f(w, zi) + r(w) (8)

Besides Assumptions 1, 2, we further make the following assumption for developing faster rates.

Assumption 3. For the stochastic optimization problem (1), we assume f(w, z) is a non-negative
and L-smooth convex function w.r.t w for any z 2 Z .

It is notable that we do not assume that r(w) is smooth. Our main result in this subsection is presented
in the following theorem.

Theorem 2 (Result II). Under Assumptions 1, 2, and 3, with probability at least 1� δ we have

P (bw)� P∗ � O

 
d log n+ log(1/δ)

n
+

�
(d log n+ log(1/δ))P∗

n

� 1
2−θ
!
.

When n � Ω
��
α1=�d log n

�2−��
, with probability at least 1� δ,

P (bw)� P∗ � O

 �
d log n+ log(1/δ)

n

� 2
2−θ

+

�
(d log n+ log(1/δ))P∗

n

� 1
2−θ
!
.

Remark: The constant in big O and Ω can be seen from the proof, which is tedious and included
in the supplement. Here we focus on the understanding of the results. First, the above results are
optimistic rates that are no worse than that in Theorem 1. Second, the first result implies that when the
optimal risk P∗ is less than O((d log n/n)1−�), the excess risk bound is in the order of O(d log n/n).
Third, when the number of samples n is sufficiently large and the optimal risk is sufficiently small,
the second result can imply a faster rate than O(d log n/n). Considering smooth functions presented
in Section 5 with θ = 1, when n � Ω(αd log n) and P∗ � O(d log n/n) (large-sample and small
optimal risk), the excess risk can be bounded by O((d log n/n)2). In another word, the sample
complexity for achieving an ε-excess risk bound is given by eO(d/

p
ε). To the best of our knowledge,

the sample complexity of ERM in the order of 1/
p
ε for these examples is the first result appearing in

the literature.

4 Efficient SA for Lipschitz continuous random functions

In this section, we will present intermediate rates of an efficient stochastic approximation algorithm
for solving (1) adaptive to the EBC under the Assumption 1 and 2. Note that (2) can be considered as
a special case by absorbing r(w) into f(w, z).
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Algorithm 1 SSG(w1, γ, T,W)

Input: w1 2 W , γ > 0 and T
1: for t = 1, . . . , T do
2: wt+1 = ΠW(wt � γgt)
3: end for
4: bwT = 1

T+1

PT+1
t=1 wt

5: return bwT

Algorithm 2 ASA(w1, n,R)

1: SetR0 = 2R, bw0 = w1,m = b 1
2 log2

2n
log2 n

c�1, n0 = b nmc
2: for k = 1, . . . ,m do
3: Set γk = Rk−1

G
√
n0+1

and Rk = Rk−1/2

4: bwk = SSG(bwk−1, γk, n0,W \ B(bwk−1, Rk−1))
5: end for
6: return bwm

Denote by z1, . . . zk, . . . i.i.d samples drawn sequentially from the distribution P, by gk 2
∂f(w, zk)jw=wk

a stochastic subgradient evaluated at wk with sample zk, and by B(w, R)
a bounded ball centered at w with a radius R. By the Lipschitz continuity of f , we have
k∂f(w, z)k2 � G for 8w 2 W,8z 2 Z .

The proposed adaptive stochastic approximation algorithm is presented in Algorithm 2, which
is referred to as ASA. The updates are divided into m stages, where at each stage a stochastic
subgradient method (Algorithm 1) is employed for running n0 = bn/mc iterations with a constant
step size γk. The step size γk will be decreased by half after each stage and the next stage will be
warm-started using the solution returned from the last stage as the initial solution. The projection onto
the intersection ofW and a shrinking bounded ball at each stage is a commonly used trick for the
high probability analysis [14, 15, 49]. We emphasize that the subroutine in ASA can be replaced by
other SA algorithms, e.g., the proximal variant of stochastic subgradient for handling a non-smooth
deterministic component such as `1 norm regularization [7], stochastic mirror descent with with a
p-norm divergence function [8], and etc. Please see an example in the supplement.

It is worth mentioning that the dividing schema of ASA is due to [15], which however restricts its
analysis to uniformly convex functions where uniform convexity is a stronger condition than the
EBC. ASA is also similar to a recently proposed accelerated stochastic subgradient (ASSG) method
under the EBC [49]. However, the key differences are that (i) ASA is developed for a fixed number of
iterations while ASSG is developed for a fixed accuracy level ε; (ii) the adaptive iteration complexity
of ASSG requires knowing the value of θ 2 (0, 2] while ASA does not require the value of θ. As a
trade-off, we restrict our attention to θ 2 (0, 1].

Theorem 3 (Result III). Suppose Assumptions 1 and 2 hold, and kw1 �w∗k2 � R0, where w∗

is the closest optimal solution to w1. Define ᾱ = max(αG2, (R0G)2−�). For n � 100 and any
δ 2 (0, 1), with probability at least 1� δ, we have

P (bwm)� P∗ � O
�
ᾱ(log(n) log(log(n)/δ))

n

� 1
2−θ

.

Remark: The significance of the result is that although Algorithm 2 does not utilize any knowledge
about EBC, it is automatically adaptive to the EBC. As a final note, the projection onto the intersection
ofW and a bounded ball can be efficiently computed by employing the projection ontoW and a
binary search for the Lagrangian multiplier of the ball constraint. Moreover, we can replace the
subroutine with a slightly different variant of SSG to get around of the projection onto the intersection
ofW and a bounded ball, which is presented in the supplement.

5 Applications

From the last two sections, we can see that θ = 1 is a favorable case, which yields the fastest rate
in our results. It is obvious that if f(w, z) is strongly convex or P (w) is strongly convex, then
EBC(θ = 1, α) holds. Below we show some examples of problem (1) and (2) with θ = 1 without
strong convexity, which not only recover some known results of fast rate eO(d/n), but also induce
new results of fast rates that are even faster than eO(d/n).

Quadratic Problems (QP): min
w∈W

P (w) , w>Ez[A(z)]w + w>Ez′ [b(z′)] + c (9)

where c is a constant. The random function can be taken as f(w, z, z′) = w>A(z)w+w>b(z′) + c.
We have the following corollary.
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Corollary 1. If Ez[A(z)] is a positive semi-definite matrix (not necessarily positive definite)
and W is a bounded polyhedron, then the problem (9) satisfies EBC(θ = 1, α). Assume that
max(kA(z)k2, kb(z′)k2) � σ < 1, then ERM has a fast rate at least eO(d/n). If f(w, z, z′) is
further non-negative, convex and smooth, then ERM has a fast rate of eO((d/n)2 + dP∗/n) when
n � Ω(d log n). ASA has a convergence rate of eO(1/n).

Next, we present some instances of the quadratic problem (9).
Instance 1 of QP: minimizing the expected square loss. Consider the following problem:

min
w∈W

P (w) , Ex;y[(w>x� y)2] (10)

where x 2 X , y 2 Y andW is a bounded polyhedron (e.g., `1-ball or `∞-ball). It is not difficult
to show that it is an instance of (9) and has the property that f(w, z, z′) is non-negative, smooth,
convex, Lipchitz continuous overW . The convergence results in Corollary 1 for this instance not
only recover some known results of eO(d/n) rate [22, 26], but also imply a faster rate than eO(d/n) in
a large-sample regime and an optimistic case when n � Ω(d log n), P∗ � O(d log n/n), where the
latter result is the first such result of its own.

Instance 2 of QP. Let us consider the following problem:
min

w∈W
P (w) , Ez[w>(S � zz>)w]�w>b (11)

where S �Ez[zz>] � 0. It is notable that f(w, z) = w>(S � zz>)w�w>b might be non-convex.
A similar problem as (11) could arise in computing the leading eigen-vector of E[zz>] by performing
shifted-and-inverted power method over random samples z � P [10].

Piecewise Linear Problems (PLP): min
w∈W

P (w) , E[f(w, z)] (12)

where E[f(w, z)] is a piecewise linear convex function andW is a bounded polyhedron. We have
the following corollary.

Corollary 2. If E[f(w, z)] is piecewise linear and convex andW is a bounded polyhedron, then the
problem (12) satisfies EBC(θ = 1, α). If f(w, z) is Lipschitz continuous, then ERM has a fast rate at
least eO(d/n), and ASA has a convergence rate of eO(1/n). If f(w, z) is further non-negative and
linear, then ERM has a fast rate of eO((d/n)2 + dP∗/n) when n � Ω(d log n).

Instance 1 of PLP: minimizing the expected hinge loss for bounded data. Consider the following
problem:

min
‖w‖p≤B

P (w) , Ex;y[(1� yw>x)+] (13)

where p = 1,1 and y 2 f1,�1g. Suppose that x 2 X is bounded and scaled such that jw>xj � 1.
Koolen et al. [20] has considered this instance with p = 2 and proved that the Bernstein condition
(Definition 2) holds with β = 1 for the problem (13) when E[yx] 6= 0 and jw>xj � 1. In contrast,
we can show that the problem (13) with any p = 1, 2,1 norm constraint 3, the EBC(θ = 1, α) holds
since the objective P (w) = 1 � w>E[yx] is essentially a linear function of w. Then all results
in Corollary 2 hold. To the best of our knowledge, the fast rates of ERM and SA for this instance
with `1 and `∞ norm constraint are the new results. In comparison, Koolen et al.’s [20] fast rate ofeO(1/n) only applies to SA and `2 norm constraint, and their SA algorithm is not as efficient as our
SA algorithm.

Instance 2 of PLP: multi-dimensional newsvendor problem. Consider a firm that manufactures p
products from q resources. Suppose that a manager must decide on a resource vector x 2 Rq+ before
the product demand vector z 2 Rp is observed. After the demand becomes known, the manager
chooses a production vector y 2 Rp so as to maximize the operating profit. Assuming that the
demand z is a random vector with discrete probability distribution, the problem is equivalent to

min
x∈Rq+;x≤b

c>x� E[Π(x; z)]

where both Π(x; z) and E[Π(x; z)] are piecewise linear concave functions [18]. Then the problem
fits to the setting in Corollary 2.

3The case of p = 2 is showed later.
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Figure 1: Testing Error vs Iteration of ASA and other baselines for SA
Risk Minimization Problems over an `2 ball. Consider the following problem

min
‖w‖2≤B

P (w) , Ez[f(w, z)] (14)

Assuming that P (w) is convex and minw∈Rd P (w) < min‖w‖2≤B P (w), we can show that
EBC(θ = 1, α) holds (see supplement). Using this result, we can easily show that the consid-
ered problem (13) with p = 2 satisfies EBC(θ = 1, α).

Risk Minimization with `1 Regularization Problems. For `1 regularized risk minimization:
min
‖w‖1≤B

P (w) , E[f(w; z)] + λkwk1, (15)

we have the following corollary.

Corollary 3. If the first component is quadratic as in (9) or is piecewise linear and convex, then
the problem (15) satisfies EBC(θ = 1, α). If the random function is Lipschitz continuous, then
ERM has a fast rate at least eO(d/n), and ASA has a convergence rate of eO(1/n). If f(w, z) is
further non-negative, convex and smooth, then ERM has a fast rate of eO((d/n)2 + dP∗/n) when
n � Ω(d log n).

To the best of our knowledge, this above general result is the first of its kind. Next, we show some
instances satisfying EBC(θ, α) with θ < 1. Consider the problem minw∈W F (w) , P (w)+λkwkpp,
where P (w) is quadratic as in (9), andW is a bounded polyhedron. In the supplement, we prove that
EBC(θ = 2/p, α) holds.

A Case Study for ASA. Finally, we provide some empirical evidence to support the effectiveness
of the proposed ASA algorithm. In particular, we will consider solving an `1 regularized expected
square loss minimization problem (15) for learning a predictive model. We compare with two
baselines whose convergence rate are known as O(1/

p
n), namely proximal stochastic gradient

(PSG) method [7], and stochastic mirror descent (SMD) method using a p-norm divergence function
(p = 2 log d) other than the Euclidean function. For SMD, we implement the algorithm proposed
in [37], which was proposed for solving (15) and could be effective for very high-dimensional data.
For ASA, we implement two versions that use PSG and SMD as the subroutine and report the one
that gives the best performance. The two versions differ in using the Euclidean norm or the p-norm
for measuring distance. Since the comparison is focused on the testing error, we also include another
strong baseline, i.e, averaged stochastic gradient (ASGD) with a constant step size, which enjoys an
O(d/n) rate for minimizing the expected square loss without any constraints or regularizations [1].

We use four benchmark datasets from libsvm website4, namely, real-sim, rcv1_binary, E2006-tfidf,
E2006-log1p, whose dimensionality is 20958, 47236, 150360, 4272227, respectively. We divide each
dataset into three sets, respectively training, validation, and testing. For E2006-tfidf and E2006-log1p
dataset, we randomly split the given testing set into half validation and half testing. For the dataset
real-sim which do not explicitly provides a testing set, we randomly split the entire data into 4:1:1
for training, validation, and testing. For rcv1_binary, despite that the test set is given, the size of the
training set is relatively small. Thus we first combine the training and the testing sets and then follow
the above procedure to split it.

The involved parameters of each algorithm are tuned based on the validation data. With the selected
parameters, we run each algorithm by passing through training examples once and evaluate interme-
diate models on the testing data to compute the testing error measured by square loss. The results

4http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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on different data sets averaged over 5 random runs over shuffled training examples are shown in
Figure 1. From the testing curves, we can see that the proposed ASA has similar convergence rate
to ASGD on two relatively low-dimensional data sets. This is not surprise since both algorithms
enjoy an eO(1/n) convergence rate indicated by their theories. For the data set E2006-tfidf and
E2006-log1p, we observe that ASA converges much faster than ASGD, which is due to the presence
of `1 regularization. In addition, ASA converges much faster than SGD and SMD with one exception
on E2006-log1p, on which ASA performs slightly better than SMD.

6 Conclusion

We have comprehensively studied statistical learning under the error bound condition for both ERM
and SA. We established the connection between the error bound condition and previous conditions
for developing fast rates of empirical risk minimization for Lipschitz continuous loss functions. We
also developed improved rates for non-negative and smooth convex loss functions, which induce
faster rates that were not achieved before. Finally, we analyzed an efficient “parameter"-free SA
algorithm under the error bound condition and showed that it is automatically adaptive to the error
bound condition. Applications in machine learning and other fields are considered and empirical
studies corroborate the fast rate of the developed algorithms. An open question is how to develop
efficient SA algorithms under the error bound condition with optimistic rates for non-negative smooth
loss functions similar to the results obtained for empirical risk minimization in this paper.
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A Proof of Lemma 1

Proof. The proof follows similarly as the proof of Theorem 5.4 in [46]. Let us fix an arbitrary
w 2 W and its closest optimal solution w∗ 2 W∗. Let X = f(w, z) � f(w∗, z) be a random
variable due to z. Then jXj � 2GR , a. Let b > 0 be any finite constant, κ(x) = (ex � x� 1)/x2

for x 6= 0 and κ(0) = 1/2, cb1 = 1/κ(2ba /κ



Applying Theorem 1 in [27] with t = 
n
2 , we have

Pr

 
1

n

nX
i=1

Fw(zi) �
γn
2

!
� exp

�
� 0.5v(γn)

Bv(γn) + 2
nγn +

v(γn)γn
4

�
.

Assume that
�
a
n

� 1−θ
2−θ � αbG2κ(4GRb), i.e., n � a

�
αbG2κ(4GRb)

�(2−�)=(1−�)
, which implies

that v(γn) = c
�
a
n

� 1−θ
2−θ ^ b = c

�
a
n

� 1−θ
2−θ by noting the value of c = 1/(αG2κ(4GRb)) in Lemma 1.

Further we assume n � a(0.5Bc)
2−θ
1−θ . Hence Bv(γn) � 2.

Pr

 
1

n

nX
i=1

Fw(zi) �
γn
2

!
� exp

�
� 0.5v(γn)

Bv(γn) + 2
nγn +

v(γn)γn
4

�
� exp

�
�0.125v(γn)nγn +

v(γn)γn
4

�
= exp

�
�0.125ca+

ca

4n

�
� exp (�0.375ca) ,

where we use n � 1.

As a result, we have

Pr

 
1

n

nX
i=1

Fw(zi) �
γn
2

!
� exp (�0.375ca) .

Taking a union bound overW≥
n;" we have that

Pr

 
9w 2 W≥
n;",

1

n

nX
i=1

Fw(zi) �
γn
2

!
�
�

16GR

ε

�d
exp (�0.375ca)

Taking ε = 1
2n1/(2−θ) and a = 3

c (d log(32GRn1=(2−�)) + log(1/δ)), with probability 1� δ for all

w 2 W≥
n;", we have 1
n

Pn
i=1 Fw(zi) � a1/(2−θ)

2n1/(2−θ) .

Now, since supw∈W≥γn minw̃∈W≥γn,ε kFw � Fwk∞ � ε = 1
2n1/(2−θ) , and by increasing a by 1 to

guarantee that a > 1, with probability 1� δ, for all w 2 W≥
n , 1
n

Pn
i=1 Fw(zi) > 0.

C Proof of Theorem 2

The proof follows the framework developed in [55], which converts the excess risk bound ofbw into large deviation of gradients. In particular, if we let F (w) = E[f(w; z)] and Fn(w) =
1
n

Pn
i=1 f(w; zi), we will prove the following lemma.

Lemma 2. If we let bw∗ be an optimal solution to minw∈W P (w) that is closest to bw, then we have
P (bw)� P (bw∗) � krF (bw)�rF (bw∗)� [rFn(bw)�rFn(bw∗)]k2 kbw � bw∗k2

+ krF (bw∗)�rFn(bw∗)k2 kbw � bw∗k2
where P (w) = F (w) + r(w).

Note that [55] only proves the above result for P (w) = F (w). Then we use concentration inequali-
ties, covering numbers, and a refined analysis leveraging the EBC to bound the excess risk, where the
refined analysis leveraging the EBC is our main contribution for proving Theorem 2.

Proof. (Proof of Lemma 2)
P (bw)� P (bw∗) � h∂P (bw), bw � bw∗i = h∂P (bw)� ∂P (bw∗), bw � bw∗i+ h∂P (bw∗), bw � bw∗i
= h∂P (bw)� ∂P (bw∗)� [∂Pn(bw)� ∂Pn(bw∗)], bw � bw∗i+ h∂Pn(bw)� ∂Pn(bw∗) + ∂P (bw∗), bw � bw∗i
= h∂P (bw)� ∂P (bw∗)� [∂Pn(bw)� ∂Pn(bw∗)], bw � bw∗i+ h∂P (bw∗)� ∂Pn(bw∗), bw � bw∗i
+ h∂Pn(bw), bw � bw∗i

According to the optimality condition of bw, there exists v 2 ∂r(bw) such that hrFn(bw) + v, bw �bw∗i � 0. Let ∂Pn(bw) = rFn(bw) +v and ∂P (bw) = rF (bw) +v in the above inequality, we have
P (bw)� P (bw∗) � hrF (bw)�rF (bw∗)� [rFn(bw)�rFn(bw∗)], bw � bw∗i
+ hrF (bw∗)�rFn(bw∗), bw � bw∗i
� (krF (bw)�rF (bw∗)� [rFn(bw)�rFn(bw∗)]k2 + krF (bw∗)�rFn(bw∗)k2) � kbw � bw∗k2
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The proof below uses the L-smoothness and convexity of F (w), i.e., there exists L � 0 such that for
any w,u 2 W ,

0 �f(w, z)� f(u, z)�rf(u, z)>(w � u) � L

2
kw � uk22, 8z 2 Z.

We first prove the following theorem. Theorem 2 is a corollary of the following theorem by setting
ε = 1/n.

Theorem 4. Let ε > 0 be any constant and C(ε) = 2(log(2/δ) + d log(6R/ε). Under Assump-
tions 1, 2, 3, and that r(w) is convex and G′-Lipschitz continuous overW , with probability at least
1� 2δ, we have

P (bw)� P∗ �
4(6LR2 + ḠR)C(ε)

n
+ 2

�
1 _ α1=�

��4LC(ε)P∗
n

� 1
2−θ

+ 2

�
12RL+

Ḡ

4
+

4LRC(ε)

n

�
ε,

where Ḡ = G+G′. Furthermore, if n �
�

256LC(ε)α
1
θ

�(2−�)
, we also have

P (bw)� P∗ � 34LC(ε)

�
1

n

� 2
2−θ

+ 2
�

1 _ 4α1=�
�� ḠC(ε)

n

� 2
2−θ

+ 2
�

1 _ 64α1=�
��4LC(ε)P∗

n

� 1
2−θ

+ 4LC(ε)
�

1 _ 64α1=�
�� ε

n

� 2
2−θ

+ 12L
�

1 _ 64α1=�
�
ε

2
2−θ + 2

�
1 _ 64α1=�

��4LḠC(ε)ε

n

� 1
2−θ

.

To prove the theorem, we need the following lemmas.

Lemma 3. Under Assumptions 1, with probability at least 1� δ, for any w 2 W , we have
krF (w)�rF (w∗)� [rFn(w)�rFn(w∗)]k2

� LC(ε)kw �w∗k2
n

+
2LC(ε)ε

n
+

r
LC(ε)(P (w)� P∗)

n
+ 2

r
LḠC(ε)ε

n
+ 4Lε.

where w∗ is the closest optimal solution to w and C(ε) is define in Theorem 4.

Lemma 4. Under Assumption 1, with probability at least 1� δ, for any w∗ 2 W∗, we have

krF (w∗)�rFn(w∗)k2 �
GC(ε)

n
+

r
4LC(ε)P∗

n
+ 2Lε. (16)

Lemma 5. Let A be a nonnegative number. Under the EBC(θ, α) condition with θ 2 (0, 1] and
0 < α <1, for any ε > 0 and w 2 W , we have

kw �w∗k2
p
A �

�
1 _ α

1=�

4ε

�
A

1
2−θ + ε(P (w)� P∗)

C.1 Proof of Theorem 4

Proof. Using the Lemma 3 and Lemma 4 to proceed bounding the inequality in Lemma 2, with
probability at least 1� 2δ, we have

P (bw)� P∗ �
LC(ε)kbw � bw∗k22

n
+
ḠC(ε) kbw � bw∗k2

n
+

2LC(ε)εkbw � bw∗k2
n

+ 6Lε kbw � bw∗k2
+ kbw � bw∗k2

r
LC(ε)(P (bw)� P∗)

n
+ kbw � bw∗k2

r
4LC(ε)P∗

n
+ kbw � bw∗k2

r
4LḠC(ε)ε

n
.

(17)
Next, we will bound the three terms that have a 1/

p
n factor.

kbw � bw∗k2
r
LC(ε)(P (bw)� P∗)

n
�
LC(ε) kbw � bw∗k22

n
+
P (bw)� P∗

4
, (18)

kbw � bw∗k2
r

4LḠC(ε)ε

n
�
LC(ε) kbw � bw∗k22

n
+ Ḡε (19)
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kbw � bw∗k2
r

4LC(ε)P∗
n

�
�

1 _ α1=�
��4LC(ε)P∗

n

� 1
2−θ

+
P (bw)� P∗

4
(20)

where the last inequality follows Lemma 5. Combining the inequalities in (17), (18), (19), and (20),
with probability 1� δ we have
P (bw)� P∗

2
� 3LC(ε)kbw � bw∗k22

n
+
ḠC(ε) kbw � bw∗k2

n
+

2LC(ε)εkbw � bw∗k2
n

+ 6Lε kbw � bw∗k2
+ Ḡε+

�
1 _ α1=�

��4LC(ε)P∗
n

� 1
2−θ

� (12LR2 + 2ḠR)C(ε)

n
+
�

1 _ α1=�
��4LC(ε)P∗

n

� 1

−θ

+



C.2 Proof of Inequality (21)

Proof. If kbw � bw∗k22 � ( 1
n )

θ
2−θ , then LC(")‖ŵ−ŵ∗‖22

n � LC(ε)( 1
n )

2
2−θ . If kbw � bw∗k22 � ( 1

n )
θ

2−θ ,
then

1

kbw � bw∗k 2
θ−2
2

� n
1−θ
2−θ , (28)

so when n �
�
LC(ε)α

1
θ /ε
�(2−�)

, we have

LC(ε)kbw � bw∗k22
n

=
LC(ε)kbw � bw∗k 2

θ
2 kbw � bw∗k2− 2

θ
2

n
� LC(ε)α

1
θ (P (bw)� P∗)
n

1
2−θ

� ε(P (bw)� P∗),

where the first inequality holds by employing the EBC and the inequality (28), and the second

inequality holds due to the fact that n �
�
LC(ε)α

1
θ /ε
�(2−�)

. Combining two cases together, we
complete the proof.

C.3 Proof of Inequality (22)

Proof. The first inequality in the inequality (22) obviously holds, and now we prove the second
inequality.

� If kbw � bw∗k22 � 4( 1
n )

θ
2−θ , then
LC(ε)kbw � bw∗k22

4εn
� LC(ε)

ε
(

1

n
)

2
2−θ .

� If kbw � bw∗k22 � 4( 1
n )

θ
2−θ , then

1

kbw � bw∗k2− 2
θ

2

� 1

22− 2
θ

n
θ−1
2−θ � 1

4
n
θ−1
2−θ , (29)

so when n �
�
LC(ε)α

1
θ /ε2

�(2−�)
, we have

LC(ε)kbw � bw∗k22
4εn

=
LC(ε)kbw � bw∗k 2

θ
2 kbw � bw∗k2− 2

θ
2

4εn
� LC(ε)α

1
θ (P (bw)� P∗)4n

1−θ
2−θ

4εn
� ε(P (bw)� P∗),

where the first inequality holds by employing the EBC and the inequality (29), and the

second inequality holds due to the fact that n �
�
LC(ε)α

1
θ /ε2

�(2−�)
.

Combining two cases together, we complete the proof.

C.4 Proof of Inequalities (23)–(27)

Proof. In Lemma 5, taking A to be�
GC(ε)

n

�2

,
� ε
n

�2

, ε2,
4LC(ε)P∗

n
,

4LGC(ε)ε

n
yields inequalities (23)–(27) respectively.

D Proof of Lemma 3

Lemma 6. [40]. LetH be a Hilbert space and let ξ be a random variable with values inH. Assume
kξk � G <1 almost surely. Denote σ2(ξ) = E

�
kξk2

�
. Let fξigmi=1 be m (m <1) independent

drawers of ξ. For any 0 < δ < 1, with confidence 1� δ,




 1

m

mX
i=1

[ξi � E[ξi]]






 � 2G log(2/δ)

m
+

r
2σ2(ξ) log(2/δ)

m
.
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Proof of Lemma 3. In order to prove the high probability bounds for all w 2 W , we first consider
the points in the ε-net ofW with minimal cardinality. To this end, let N (W, ε) denote the ε-net of
W with minimal cardinality. SinceW � Bd(R), where Bd(R) denotes a d-dimentional bounded
ball with radius R. Following the standard results of covering numbers, we have

log jN (W, ε)j � log jN (Bd(R), ε/2)j � d log
6R

ε
.

We first consider a fixed w 2 N (W, ε). Denote by w∗ the closest optimal solution to w. Let
fi(w) = f(w, zi). Since fi(�) is L-smooth, we have

krfi(w)�rfi(w∗)k2 � Lkw �w∗k2. (30)
Because fi(�) is both convex and L-smooth, by (2.1.7) of [30], we have

krfi(w)�rfi(w∗)k22 � L (fi(w)� fi(w∗)� hrfi(w∗),w �w∗i) .
Taking expectation over both sides, we have

E
h
krfi(w)�rfi(w∗)k22

i
� L (F (w)� F (w∗)� hrF (w∗),w �w∗i) � L (P (w)� P (w∗)) ,

where the last inequality follows from the optimality condition of w∗, i.e., there exists v∗ 2 ∂R(w∗)

hrF (w∗) + v∗,w �w∗i � 0, 8w 2 W.

and the convexity of R(w) and F (w), i.e., hrF (w∗),w �w∗i � F (w) � F (w∗) and hv∗,w �
w∗i � R(w)�R(w∗).

Following Lemma 6, with probability at least 1� δ, we have




rF (w)�rF (w∗)� 1

n

nX
i=1

[rfi(w)�rfi(w∗)]







2

� 2Lkw �w∗k2 log(2/δ)

n

+

r
2L(P (w)� P (w∗)) log(2/δ)

n
.

By taking the union bound over N (W, ε), we have for any w 2 N (W, ε), with probability 1� δ,

krP (w)�rP (w∗)� [rPn(w)�rPn(w∗)]k2 =






rF (w)�rF (w∗)� 1

n

nX
i=1

[rfi(w)�rfi(w∗)]







2

� 2Lkw �w∗k2(log(2/δ) + d log(6R/ε))

n
+

r
2L(P (w)� P (w∗))(log(2/δ) + d log(6R/ε))

n
.

To finish the proof of Lemma 3, for any w 2 W . There exists ew 2 N (W, ε) such that kw� ewk � ε.
Let ew∗ denote the closest optimal solution to ew. Then by non-expansiveness of projection onto a
convex set we have kw∗ � ew∗k2 � kw � ewk2 � ε. In addition, we have

kew � ew∗k2 � kew �wk2 + kw �w∗k2 + kw∗ � ew∗k2 � 2ε+ kw �w∗k2 (31)

P (ew)� P (ew∗) � P (ew)� P (w) + P (w)� P (w∗) + P (w∗)� P (ew∗)
� Ḡkew �wk2 + P (w)� P (w∗) + Ḡkw∗ � ew∗k2
� 2Ḡε+ P (w)� P (w∗)

(32)

Then with probability 1� δ, we have
krP (w)�rP (w∗)� [rPn(w)�rPn(w∗)]k2
� krP (ew)�rP (ew∗)� [rPn(ew)�rPn(ew∗)]k2 + 2Lkw � ewk2 + 2Lkw∗ � ew∗k2
� 2Lkew � ew∗k2(log(2/δ) + 2d log(6R/ε))

n
+

r
2L(P (ew)� P (ew∗))(log(2/δ) + 2d log(6R/ε))

n
+ 4Lε

� 2L(kw �w∗k2 + 2ε)(log(2/δ) + 2d log(6R/ε))

n
+

r
2L(2Ḡε+ (P (w)� P (w∗)))(log(2/δ) + 2d log(6R/ε))

n
+

4Lε

� LC(ε)kw �w∗k2
n

+
2LC(ε)ε

n
+

r
LC(ε)(P (w)� P∗)

n
+ 2

r
LḠC(ε)ε

n
+ 4Lε.

18



E Proof of Lemma 4

Proof. We first consider a fixed w∗ 2 N (W∗, ε) � W∗. To apply Lemma 6, we need an upper
bound of E

�
krfi(w∗)k22

�
. Since fi(�) is L-smooth and nonnegative, from Lemma 4.1 of [41], we

have
krfi(w∗)k22 � 4Lfi(w∗)

and thus
E
�
krfi(w∗)k22

�
� 4LE [fi(w∗)] = 4LF∗.

By Assumption 1, we have krfi(w∗)k2 � G. Then, according to Lemma 6, with probability at
least 1� δ, we have

krF (w∗)�rFn(w∗)k2 =






rF (w∗)�
1

n

nX
i=1

rfi(w∗)







2

� 2G log(2/δ)

n
+

r
8LF∗ log(2/δ)

n
.

By taking the union bound over N (W∗, ε), for any w∗ 2 N (W∗, ε), with probability 1� δ we have

krF (w∗)�rFn(w∗)k2 �
GC(ε)

n
+

r
4LF∗C(ε)

n
.

For any w∗ 2 W∗, there exists ew∗ 2 N (W∗, ε) such that kw∗ � ew∗k � ε. Then
krF (w∗)�rFn(w∗)k2 � krF (ew∗)�rFn(ew∗)k2 + krF (w∗)�rF (ew∗)k2

+ krFn(w∗)�rFn(ew∗)k2
� GC(ε)

n
+

r
4LF∗C(ε)

n
+ 2Lε.

F Proof of Lemma 5

Proof. We consider two cases. First, kw � w∗k2 � A
θ

4−2θ , under which the inequality follows
trivially. Next, we consider kw � bw∗k2 � A θ

4−2θ . Then

kw �w∗k2
p
A =

kw �w∗k1=�2

kw �w∗k1=�−1
2

p
A � kw �w∗k1=�2 A

1
2(2−θ) � εkw �w∗k2=�2

α1=�
+
α1=�

4ε
A

1
2−θ

� ε(P (w)� P∗) +
α1=�

4ε
A

1
2−θ

where the last inequality follows the EBC.

G Proof of Theorem 3

Before proceeding to the proof, we first present a standard result for SSG, which is the Lemma 10 of
[14].
Proposition 1. Suppose Assumptions 1 and 2 hold. Let 0 < δ < 1, w∗ 2 W∗ be the closest
optimal solution to w1, and R0 be an upper bound on kw1 � w∗k2. Apply T iterations of the
update wt+1 = ΠW∩B(w1;R0)(wt � γgt), where gt is a stochastic subgradient of P (w) at wt. With
probability at least 1� δ, we have

P (bwT )� P∗ �
γG2

2
+
kw1 �w∗k22
2γ(T + 1)

+
4GR0

p
2 log(2/δ)p
T + 1

.

where bwT = 1
T+1

PT+1
t=1 wt. Moreover, choose γ = R0

G
√
T+1

, and then with probability at least
1� δ,

P (bwT )� P∗ � R0G

 
1p
T + 1

+
4
p

2 log(2/δ)p
T + 1

!
.

It is easy to derive a similar lemma as Proposition 1, which is stated in Lemma 7.
Lemma 7. Suppose Assumptions 1 and 2 hold. Let 0 < δ < 1, R0 be any nonnegative real
number. Apply T iterations of the update wt+1 = ΠW∩B(w1;R0)(wt � γgt), where gt is a stochastic
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subgradient of P (w) at wt. With probablity at least 1� δ, we have

P (bwT )� P (w1) � γG2

2
+

4GR0

p
2 log(2/δ)p
T + 1

,

where bwT = 1
T+1

PT+1
t=1 wt. Moreover, choose γ = R0

G
√
T+1

, and then with probability at least
1� δ,

P (bwT )� P (w1) � R0G

 
1p
T + 1

+
4
p

2 log(2/δ)p
T + 1

!
.

Proof. Denote Et−1(X) by the expectation conditioned on the randomness until round t� 1, then
we have Et−1(ĝt) = gt, and Xt = gt(wt �w1)� ĝt(wt �w1) is a martingale difference sequence.
Note that kgtk2 = kEt−1(ĝt)k2 � Et−1(kĝtk2) � G, so we have

jXtj � kgtk2kwt �w1k2 + kĝtk2kwt �w1k2 � 4GR0,

since the update needs to project the gradient update onto the intersection ofW and a ball with radius
R0.

By Azuma-Hoeffding’s inequality, we have with probability at least 1� δ,

1

T + 1

T+1X
t=1

gt(wt �w1)� 1

T + 1

TX
t=1

ĝt(wt �w1) �
4GR0

p
2 log(1/δ)p
T + 1

. (33)

By the convexity of P , we have P (wt) � P (w1) � gt(wt �w1), then using a standard result in
online gradient descent [56], we have

1

T + 1

TX
t=1

ĝt(wt �w1) � γG2

2
+
kw1 �w1k22
2γ(T + 1)

=
γG2

2
. (34)

Combining inequality (33) and (34) suffices to derive the conclusion.

With the above proposition and lemma, the proof of Theorem 3 proceeds similarly as that of Theorem
5.3 in [15]. The difference is that our analysis only relies on the EBC instead of the uniform convexity.

Proof. Define δ̄ = 2�
log2 n

, and

a(n, δ̄) = G

�
1p
n+ 1

+
4
p

2 log(2/δ̄)p
n+ 1

�
.

We set µ0 = 2R
1− 2

θ
0 a(n0, δ̄), µk = 2( 2

θ−1)kµ0 and Rk = R0/2
k, where k = 1, . . . ,m. Then we

have µkR
2
θ

k = 2−kµ0R
2
θ
0 . We can also assume that α is large enough such that α � R2−�

0 /G�, i.e.,

α−
1
θ � GR1− 2

θ
0 , otherwise we can set α = R2−�

0 /G�, which makes the EBC still hold.

By definition of m, when n � 100,

0 <
1

2
log2

2n

log2 n
� 2 � m � 1

2
log2

2n

log2 n
� 1 � 1

2
log2 n, (35)

so we have

2m � 1

4

s
2n

log2 n
. (36)
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When n � 100, we have
µm = 2( 2

θ−1)mµ0 � 2mµ0

� 1

4

s
2n

log2 n
4GR

1− 2
θ

0

 
1

2
p
n0 + 1

+
2
p

2 log(log2 n)p
n0 + 1

!

� GR1− 2
θ

0

s
2n

log2 n

 
1

2
p

n
m + 1

+
2
p

2 log(log2 n)p
n
m + 1

!

� GR1− 2
θ

0

s
2n

log2 n

0@ 1

2
q

2n
log2 2n−log2 log2 n−4 + 1

+
2
p

2 log(log2 n)q
2n

log2 2n−log2 log2 n−4 + 1

1A
� GR1− 2

θ
0

s
2n

log2 n

2
qp

2 log(log2 n)q
2n

log2 2n−log2 log2 n−4 + 1

= GR
1− 2

θ
0

2
qp

2 log(log2 n)r
1

1− log2 log2 n+3
log2 n

+ log2 n
2n

� GR1− 2
θ

0 ,

where the first inequality holds because θ 2 (0, 1], the second inequality comes from (36) and the fact
that 0 < δ < 1, the third and fourth inequalities hold because of the definition of n0 and inequality
(35), the fifth inequality holds by utilizing a+b � 2

p
ab, and the sixth inequality holds since n � 100

and the function is monotonically increasing with respect to n. So α−
1
θ � µm.

Below, given bwk we denote by bw∗k the closest optimal solution to bwk. Next, we consider two cases.

Case 1. If α−
1
θ � µ0, then µ0 � α−

1
θ � µm. We have the following lemma.

Lemma 8. Let k∗ satisfy µk∗ � α−
1
θ � 2

2
θ−1µk∗ . Then for any 1 � k � k∗, there exists a Borel

set Ak � Ω of probability at least 1� kδ̄, such that for ω 2 Ak, the points fbwkgmk=1 generated by
the Algorithm 2 satisfy

kbwk−1 � bw∗k−1k2 � Rk−1 = 2−k+1R0, (37)

P (bwk)� P∗ � µkR
2
θ

k = 2−kµ0R
2
θ
0 . (38)

Moreover, for k > k∗ there is a Borel set Ck � Ω of probability at least 1� (k � k∗)δ̄ such that on
Ck, we have

P (bwk)� P (bwk∗) � µk∗R
2
θ

k∗ . (39)

Proof. (Proof of Lemma 8) We prove (37) and (38) by induction. Note that (37) holds for k = 1.
Assume it is true for some k > 1 on Ak−1. According to the Proposition 1, there exists a Borel set
Bk with Pr(Bk) � 1� δ̄ such that

P (bwk)� P∗ � Rk−1G

 
1p

n0 + 1
+

4
p

2 log(2/δ̄)p
n0 + 1

!
= Rk−1a(n0, δ̄)

=
1

2
µk2(1− 2

θ )kR
2
θ−1
0 Rk−1 = µkR

2
θ

k ,

which is (38). By the inductive hypothesis, kbwk−1 � w∗k−1k2 � Rk−1 on the set Ak−1. Define
Ak = Ak−1 \ Bk. Note that

Pr(Ak) � Pr(Ak−1) + Pr(Bk)� 1 � 1� kδ̄,
and on Ak, by the EBC and the definition of k∗, we have

kbwk � bw∗kk 2
θ
2 � α

1
θ (P (bwk)� P∗) �

P (bwk)� P∗
µk∗

�
µkR

2
θ

k

µk∗
� R

2
θ

k ,

which is (37) for k + 1.
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Now we prove (39). For k > k∗, by Lemma 7, there exists a Borel set Bk with Pr(Bk) � 1� δ̄ such
that

P (bwk)� P (bwk−1) � γkG
2

2
+

4GRk−1

p
2 log(2/δ)p

n0 + 1
� Rk−1a(n0, δ̄) = 2k

∗−kRk∗−1a(n0, δ̄)

= 2k
∗−kµk∗R

2
θ

k∗ = µkR
2
θ

k ,

which implies that on Ck = \kj=k∗+1Bj , we have

P (bwk)� P (bwk∗) =

kX
j=k∗+1

(P (bwj)� P (bwj−1)) �
kX

j=k∗+1

2k
∗−jµk∗R

2
θ

k∗ � µk∗R
2
θ

k∗ .

By union bound, we have Pr(\kj=k∗+1Bj) � 1� (k � k∗)δ̄. Here completes the proof.

Now we proceed the proof as follows. Note that µ0 � α−
1
θ � µm. At the end of k∗-th stage, on the

Borel set Ak∗ of probability at least 1� k∗δ̄, we have

P (bwk∗)� P∗ � µk∗R
2
θ

k∗ .

Then on the Borel set Dm = Cm \ Ak∗ = (\mj=k∗+1Bj) \Ak∗ with Pr(Dm) � 1�mδ̄, we have

P (bwm)� P∗ = P (bwm)� P (bwk∗) + (P (bwk∗)� P∗) � 2µk∗R
2
θ

k∗ � 4(
µk∗

α−
1
θ

)
1

2
θ
−1µk∗R

2
θ

k∗

= 4

 
2( 2

θ−1)k∗µ0

α−
1
θ

! 1
2
θ
−1

µk∗R
2
θ

k∗ = 4(2k
∗
µk∗R

2
θ

k∗µ
θ

2−θ
0 α

1
2−θ )

= 4(µ0R
2
θ
0 µ

θ
2−θ
0 α

1
2−θ ) = 4[(2R

1− 2
θ

0 a(n0, δ̄))
2

2−θR
2
θ
0 α

1
2−θ ] = 4(2

p
α � a(n0, δ̄))

2
2−θ

= (22−�2
p
α � a(n0, δ̄))

2
2−θ .

By the definition of m and δ̄, and the fact that m � 1
2 log2 n, we have mδ̄ � δ. So Pr(Dm) � 1� δ.

Case 2. If α−
1
θ < µ0, then on A1 = B1,

P (bw1)� P∗ � R0 � a(n0, δ̄) =
R0

a(n0, δ̄)
θ

2−θ
� a(n0, δ̄)

2
2−θ

=
2

θ
2−θ

µ
θ

2−θ
0

a(n0, δ̄)
2

2−θ � 2
θ

2−θ

�p
α � a(n0, δ̄)

� 2
2−θ

.

Hence on A1 \ Cm, by a similar argument as in case 1, we have

P (bwm)� P∗ = P (bwm)� P (bw1) + P (bw1)� P∗ � 2R0 � a(n0, δ̄) � (2
p
α � a(n0, δ̄))

2
2−θ ,

where Pr(A1 \ Cm) � 1� δ.

Combining the two cases, we have with probability at least 1� δ,
P (bwm)� P∗

� (8
p
α _ 2

p
α)

2
2−θ

 
G

 
1p

n0 + 1
+

4
p

2 log(2/δ̄)p
n0 + 1

!! 2
2−θ

� (64α)
1

2−θ

0BB@G
�

1 + 4
q

2 log( log2 n
� )

�
q

n
1
2 log2 n

1CCA
2

2−θ

=

0BBB@
128αG2 log2 n

�
1 + 4

q
2 log( log2 n

� )

�2

n

1CCCA
1

2−θ

,

where the second inequality stems from the fact that n0 + 1 � n
m �

n
1
2 log2 n

.
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H Detailed Analysis of Examples Satisfying EBC

Risk Minimization Problems over an `2 ball.
Lemma 9. Consider the following problem

min
‖w‖2≤B

P (w) , Ez[f(w, z)] (40)

If minw∈Rd P (w) < min‖w‖2≤B P (w), then the above problem satisfies EBC(θ = 1, α).

Proof. The proof is similar to that of Theorem 3.5 of [24]. Denote w∗ by an optimal solution of
Example 4. Let Ω = fw 2 Rd j kwk2 � Bg, and F (w) = P (w) + IΩ(w), where IΩ(w) = 0 if
w 2 Ω, and otherwise IΩ(w) = +1. Then we have arg minw∈Rd F (w) = arg min‖w‖2≤B P (w).
Let w∗ 2 arg minw∈Rd F (w) denote an optimal solution.

Since B > 0, so the optimization problem is strictly feasible, then by the Lagrangian theory, there
exists some λ � 0, such that

F (w∗) = min
‖w‖2≤B

P (w) = min
w∈Rd

(P (w) + λ(kwk22 �B2))

= P (w∗) + λ(kw∗k22 �B2).

Note that minw∈Rd P (w) < min‖w‖2≤B P (w), as a result λ > 0. Then by complementary slack-
ness, we know that kw∗k2 = B. Denote by P�(w) = P (w) + λ(kwk22 �B2). Then according to
Theorem 28.1 [34], we have

w∗ 2 arg minF = fw j kwk2 = Bg \ arg min
w∈Rd

P�(w). (41)

Since P�(w) is strongly convex due to λ > 0, its optimal solution is unique. As a result,
w∗ = arg minF = arg min

w∈Rd
P�(w). (42)

In addition, there exists µ > 0 such that (due to the strong convexity of P�(w)),
kw � arg minP�(w)k2 � µ(P�(w)�min

w
P�(w))1=2

= µ(P (w) + λ(kwk22 �B2)� P (w∗))
1=2

� µ(P (w)� P (w∗))
1=2.

Then according to (42), we know that
kw �w∗k22 � µ2(P (w)� P (w∗)),

which is EBC(θ = 1, µ2).

Quadratic Problems.
Lemma 10. Consider the following problem

min
w∈W

P (w) , w>Ez[A(z)]w + w>Ez′ [b(z′)] + c (43)

If Ez[A(z)] is PSD andW is a bounded polyhedron, then the above problem satisfies EBC(θ = 1, α).

Proof. Let us consider Ez[A(z)] 6= 0; otherwise it reduces to PLP.

Note that Ez[A(z)] is PSD, so there exists a nonzero matrix A such that Ez[A(z)] = A>A. The
original optimization problem is equivalent to

min
w∈W

g(Aw) + w>Ez′ [b(z
′)] + c, (44)

where g(u) = u>u is a strongly convex function of u. Since the constraint is a polyhedral function
of w, according to the Lemma 12 of [52], we know that the optimization problem satisfies EBC(θ =
1, α).

Piecewise Linear Problems (PLP)
Lemma 11. Consider the problem

min
w∈W

P (w) , E[f(w, z)] (45)
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where E[f(w, z)] is a piecewise linear function andW is a bounded polyhedron. Then the prob-
lem (45) satisfies EBC(θ = 1, α).

Proof. According to weak sharp minima condition [5] (e.g., Lemma 8 in [52]), we have
kw �w∗k22 � c(P (w)� P (w∗))2,

Since P (w) is piecewise linear, then P (w)� P (w∗) is bounded on a bounded set. Then there exists
α > 0 such that

kw �w∗k22 � α(P (w)� P (w∗)),

`1 regularized problems
Lemma 12. Consider the problem: for `1 regularized risk minimization:

min
‖w‖1≤B

F (w) , P (w) + λkwk1, (46)

If P (w) is convex quadratic or piecewise linear, then the problem (46) satisfies EBC(θ = 1, α).

Proof. It is easy to see that P (w) is either piecewise linear or piecewise convex quadratic. According
to Lemma 3.3 of [23], we have

� When P (w) is piecewise linear, there exists α1, α > 0, such that
kw �w∗k22 � α1(P (w)� P (w∗))2 � α(P (w)� P (w∗)),

where we use the fact P (w)�P (w∗) is bounded over a bounded domain due to its Lipschitz
continuity.

� When P (w) is piecewise convex quadratic, there exists α2 > 0, such that
kw �w∗k22 � α2(P (w)� P (w∗)).

Lemma 13. Consider the problem:
min

w∈W
F (w) , P (w) + λkwkpp (47)

If P (w) is convex quadratic, and W is a bounded polyheron, then the above problem satisfies
EBC(θ = 1/p, α).

Proof.



Algorithm 3 SSGS(w1, β, T )

Input: w1 2 W , β > 0 and T
Output: bwT

1: for t = 1, . . . , T do
2: w′t+1 = (1� 2

t )wt + 2
tw1 � 2�

t gt
3: wt+1 = ΠW(w′t+1)
4: end for
5: bwT = 1

T+1

PT+1
t=1 wt

6: return bwT

Algorithm 4 ASA2(w1, n,R0)

Input: w1 2 W , n and R0 = 2R
Output: bwm

1: Set bw0 = w1, m = b 1
2 log2

2n
log2 n

c� 1, n0 =

bn/mc
2: for k = 1, . . . ,m do
3: Set βk =

Rk−1
√
n0

2G and Rk = Rk−1/2
4: bwk = SSGS(bwk−1, βk, n0)
5: end for

Proposition 2. Suppose Assumptions 1 and 2 hold. Let 0 < δ < 1/e, T � 3, w∗ 2 W∗ be the
closest optimal solution to w1, and R0 be an upper bound on kw1 �w∗k2. Apply T iterations of the
SSGS (Algorithm 3) and return the average solution, where gt is a stochastic subgradient of P (w) at
wt. With probability at least 1� δ, we have

P (bwT )� P∗ �
1

2β
kw1 �w∗k22 +

34βG2(1 + log T + log(4 log T/δ))

T
.

where bwT = 1
T+1

PT+1
t=1 wt. Moreover, choose β = R0

√
T

2G , and then with probability at least 1� δ,

P (bwT )� P∗ � R0G

�
1p
T

+
17 (1 + log T + log (4 log T/δ))p

T

�
.

Similarly, for any nonnegative R0, by choosing β = R0

√
T

2G , and then with probability at least 1� δ,

P (bwT )� P (w1) � R0G

�
1p
T

+
17 (1 + log T + log (4 log T/δ))p

T

�
.

Then we provide the high probability analysis of ASA2, which is Theorem 5.
Theorem 5. Suppose Assumptions 1, and 2 hold. Let bwm be the returned solution of the Algorithm
4. For n � 100 and any δ 2 (0, 1), with probability at least 1� δ, we have

P (bwm)� P∗ � O
�αG2 log(n)(log n+ log( logn√

�
))2

n

� 1
2−θ

.

Proof. We use the same notation as that in the proof of Theorem 3 unless specified. Define

a(n, δ̄) = G

�
1p
n

+
17(1 + log n+ log(4 log n/δ̄))p

n

�
. (48)

First we show that when n � 100, we have

1

2

s
2n

log2 n

�
1
p
n0

+
17(1 + log n0 + log(4 log n0/δ̄))p

n0

�
� 1.

Note that

LHS �

s
2n

log2 n

�p
17(1 + log n0 + log(4 log n0/δ̄))p

n0

�

�

s
34m(1 + log( nm � 1) + log(4 log( nm � 1)/δ̄))

log2 n

�

s
17(log2 n� log2 log2 n� 3) � F1

log2 n

�

s
17(1� log2 log2 n+ 3

log2 n
) � 1 = RHS,

where F1 = (1 + log( nm � 1) + log(2 log( nm � 1) log2 n/δ)). The first inequality holds by utilizing
the fact that a+ b � 2

p
ab, the second inequality holds since n � 100, and then 3 � n

m � 1 � n0 =

b nmc �
n
m , the third inequality holds because of m � 1

2 log2
2n

log2 n
� 2 > 0 and definition of δ̄, the

fourth and fifth inequalities hold since n � 100 and m � 1
2 log2 n.
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Algorithm 5 PSG(w1, γ, T,W)

Input: w1 2 W , γ > 0 and T
Output: bwT

1: for t = 1, . . . , T do
2: Compute

wt+1 = arg min
w∈W

1

2
kw �wtk22 + ηg>t w + ηr(w),

where gt is the stochastic subgradient of Ez∼P[f(w, z)] evaluated at wt

3: end for
4: bwT = 1

T

PT
t=1 wt

5: return bwT

Algorithm 6 ASA3(w1, n,R0)

Input: w1 2 W , n and R0 = 2R
Output: bwm

1: Set bw0 = w1, m = b 1
2 log2

2n
log2 n

c � 1, n0 = bn/mc
2: for k = 1, . . . ,m do
3: Set γk = Rk−1

G
√
n0

and Rk = Rk−1/2

4: bwk = PSG(bwk−1, γk, n0,W \ B(bwk−1, Rk−1))

5: end for
6: return bwm

We can duplicate the rest of the proof of Theorem 3 other than using the definition of a(n0, δ̄)
according to (48). Finally, we have with probablity at least 1� δ,

P (bwm)� P∗ � (64α)
1

2−θ a(n0, δ̄)
2

2−θ �

 
64αG2(1 + 17F2)2

2n
log2 n

� 1

! 1
2−θ

,

where

F2 = 1 + log

 
n

1
2 log2

2n
log2 n

� 2

!
+ log

 
2 log

 
n

1
2 log2

2n
log2 n

� 2

!
log2 n/δ

!
.

The second inequality holds since n0 = b nmc �
n
m � 1, 1

2 log2
2n

log2 n
� 2 � m � 1

2 log2 n.

J A variant of ASA with a subroutine using proximal mapping

In this section, we consider the nonsmooth composite optimization problem (2), which is
min

w∈W
P (w) , Ez∼P[f(w, z)] + r(w).

We introduce a variant of ASA, i.e., ASA3 (Algorithm 6), with a theoretical guarantee. ASA3 is a
multistage scheme of proximal SGD (Algorithm 5).

Before analysis, we first present a standard result of proximal SGD, which is the Lemma 5 of [49].
Proposition 3. Suppose Assumptions 1 and 2 hold. In addition, we assume the proximal mapping
in terms of r(w) has a closed form, and r(w) is ρ-Lipschitz continuous for any w 2 W . Let ε � 0

and D be the upper bound of kw1�w†1;�k2, where w†1;� is the point closed to ε-sublevel set of P (w).
Denote gt by the stochastic subgradient of Ez∼P[f(w, z)] at wt. Apply T -iterations of the following
steps:

wt+1 = arg min
w∈W∩B(w1;D)

1

2
kw �wtk22 + ηg>t w + ηr(w).

Given w1, for any δ 2 (0, 1), we have with probability at least 1� δ,

P (bwT )� P (w†1;�) �
ηG2

2
+
kw1 �w†1;�k22

2ηT
+

4GD
p

3 log(1/δ)p
T

+
ρD

T
,

where bwT = 1
T

PT
t=1 wt.
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Theorem 6. Suppose Assumptions 1 and 2 hold. In addition, we assume the proximal mapping in
terms of r(w) has a closed form, and r(w) is ρ-Lipschitz continuous for any w 2 W . kw1�w∗k2 �
R0, where w∗ is the closest optimal solution to w1. For n � 100, n0 � �2

G2 and any δ 2 (0, 1), with
probability at least 1� δ, the Algorithm ASA3 guarantees that

P (bwm)� P∗ � O
�
ᾱ(log(n) log(log(n)/δ))

n

� 1
2−θ

.

where ᾱ = max(αG2, (R0G)2−�).

Proof. At first we derive the parallel version of the Proposition 1 and Lemma 7 in the case of solving
problem (2), which is not difficult by utilizing the Proposition 3.

� We first prove the parallel version of the Proposition 1. By taking ε = 0, then w†1;� is the
projection of w1 onto the optimal setW∗, and we define it to be w∗. If R0 is a upper bound
of kw1 �w∗k2, by taking η = R0

G
√
T

, then applying T iterations of

wt+1 = arg min
w∈W∩B(w1;R0)

1

2
kw �wtk22 + ηg>t w + ηr(w)

has the guarantee that with probability at least 1� δ,

P (bwT )� P∗ � R0G

 
1p
T

+
4
p

3 log(1/δ)p
T

!
+
ρR0

T
.

By choosing T � �2

G2 , i.e., �R0

T � R0G√
T

, and we have

P (bwT )� P∗ � R0G

 
2p
T

+
4
p

3 log(1/δ)p
T

!
.

� We then prove the parallel version of the Lemma 7. We make choose ε large enough such
that w†1;� = w1. By utilizing the Proposition 3, we know that for any nonnegative R0,
taking η = R0

G
√
T

and applying T iterations of

wt+1 = arg min
w∈W∩B(w1;R0)

1

2
kw �wtk22 + ηg>t w + ηr(w)

have the guarantee that with probability at least 1� δ,

P (bwT )� P (w1) � R0G

 
1p
T

+
4
p

3 log(1/δ)p
T

!
+
ρR0

T
.

By choosing T � �2

G2 , i.e., �R0

T � R0G√
T

, and we have

P (bwT )� P∗ � R0G

 
2p
T

+
4
p

3 log(1/δ)p
T

!
.

The rest of the proof is similar to the proof of Theorem 3.

Finally, we mention that a stochastic mirror descent algorithm with a non-Euclidean norm prox-
function can be used, e.g., the Composite Objective Mirror Descent algorithm with p-norm divergence
in [8], Similar analysis based on Theorem 8 in [8] can be derived. When leveraging the error bound,
we can use a p-norm version (i.e., changing the Euclidean norm to the p-norm and the corresponding
parameter α).
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