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In the supplementary material, we will prove the two theorems in the section “Our Proposed Ap-
proaches”, and give some additional experiment results with the detailed setting of step size �t.

1 Analysis

In this section, we will give the detailed proofs of the two theorems in “Our Proposed Approaches”.
The two theorems are the special cases of Theorem 2.2 and Corollary 5.1 respectively in [1].

1.1 Proof of Theorem 1

At first, we restate Theorem 1 as follows:
Theorem 1. Assume that the loss function ‘ is convex in its first argument and that it takes value
in [0,1]. For all T2 > 1 and for all yt ∈ Y with t = T1 + 1; : : : ; T1 + T2, LS12 with parameter
�t =

√
8(ln 2)=T2 satisfies

LS12 ≤ min(LS1 ; LS2) +
√

(T2=2) ln 2: (1)

To prove Theorem 1, we propose to bound the related quantities (1=�) ln(At=At�1) where

At =

2∑
i=1

�i,t =

2∑
i=1

e�ηL
Si
t

for t ≥ T1, and AT1 = 2. LSi
t is the cumulative loss at time t of the i-th base learner, namely LSi

t =∑t
s=T1+1 ‘(fi,s; ys). In the proof we use the following classical inequality due to Hoeffding [2].

Lemma 1. Let X be a random variable with a ≤ X ≤ b. Then for any s ∈ R,

ln E[esX ] ≤ sEX +
s2(b− a)2

8

The detailed proof of Lemma 1 can be found in Section A.1 of the Appendix in [1].

Proof of Theorem 1. First observe that

ln
AT1+T2

AT1

= ln

(
2∑
i=1

e�ηL
Si
T1+T2

)
− ln 2

≥ ln

(
max
i=1,2

e�ηL
Si
T1+T2

)
− ln 2

= −� min
i=1,2

LSi

T1+T2
− ln 2:

(2)
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On the other hand, for each t = T1 + 1; : : : ; T1 + T2,

ln
At
At�1

= ln

∑2
i=1 e

�η`(fi,t,yt)e�ηL
Si
t�1∑2

j=1 e
�ηL

Sj
t�1

= ln

∑2
i=1 �i,t�1e

�η`(fi,t,yt)∑2
j=1 �j,t�1

:

Now using Lemma 1, we observe that the quantity above may be upper bounded by

−�
∑2
i=1 �i,t�1‘(fi,t; yt)∑2

j=1 �j,t�1

+
�2

8

≤ −�‘

(∑2
i=1 �i,t�1fi,t∑2
j=1 �j,t�1

; yt

)
+
�2

8

= −�‘(p̂t; yt) +
�2

8

where we used the convexity of the loss function in its first argument and the way how the weight
updates. Summing over t = T1 + 1; : : : ; T1 + T2, we get

ln
AT1+T2

AT1

≤ −�LS12 +
�2

8
T2: (3)

Combining this with the lower bound (2) and solving for LS12 , we find that

LS12 ≤ min(LS1 ; LS2) +
ln 2

�
+
�

8
T2

as desired. In particular, with � =
√

8 ln 2=T2, the upper bound becomes min(LS1 ; LS2) +√
(T2=2) ln 2.

1.2 Proof of Theorem 2

The Theorem 2 in our paper is restated as follows:
Theorem 2. For all T2 > 1, if the model is run with parameter � = 1=(T2 − 1) and � =√

8=T2 (2 ln 2 + (T2 − 1)H(1=T2 − 1)), then

LS12 ≤ min
T1+1�s�T1+T2

Ls +

√
T2

2

(
2 ln 2 + (T2 − 1)H(

1

T2 − 1
)

)
(4)

where H(x) = −x lnx− (1− x) ln(1− x) is the binary entropy function.

To prove Theorem 2, we first give some definitions. Since we only choose one base learner’s
prediction in FESL-s as our final prediction in each round, we use It ∈ {1; 2} to denote the index of
the base learners in t-th round for t = T1 +1; : : : ; T1 +T2. We call It an action. So the loss in round t
can be denoted as ‘(It; yt). Thus, randomly choosing one base learner in each round is a randomized
version of FESL-c, so we call it randomized FESL-c. Denote the distribution according to which
the random action It is drawn at time t by pt = (p1,t; p2,t), and �‘(pt; yt) =

∑2
i=1 pi,t‘(It; yt) is the

expected loss of randomized FESL-c at time t. Then we have the following lemma:

Lemma 2. Let T2 > 1 and � ∈ (0; 1). The randomized FESL-c with � =
√

8 ln 2=n satisfies, with
probability at least 1− �

T1+T2∑
t=T1+1

‘(It; yt)− min
i=1,2

T1+T2∑
t=T1+1

‘(i; yt) ≤
√
T2 ln 2

2
+

√
T2

2
ln

1

�
:

Proof. The random variables ‘(It; yt)− �‘(pt; yt), for t = T1 + 1 : : : ; T1 + T2, form a sequence of
bounded martingale differences. With a simple application of the Hoeffding-Azuma inequality and
combining the results of Theorem 1, we yield the result of this lemma.
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In addition, iT1+1; : : : ; is; is+1; : : : ; iT1+T2 is defined as the sequence of the base learner’s index
such that we can study a more ambitious goal g = LS12 − Ls where Ls =

∑T1+T2

t=T1+1 ‘(it; yt). It is
not difficult to modify the randomized FESL-c in order to achieve this goal. Specifically, we associate
a compound action with each sequence which only switches once. Then we can run our randomized
FESL-c over the set of compound actions: at any time t the randomized FESL-c draws a compound
action (IT1+1; : : : ; IT1+T2

) and plays action It. Denote by M the number of all compound actions.
Then, in FESL-c, we only have 2 base learners while in randomized FESL-c, we have M base
learners. Then Lemma 2 implies that g is bounded by

√
(T2 lnM)=2. Hence, it suffices to count

the number of compound actions: for each k = 0; : : : ; 1 there are CkT2�1 ways to pick k time steps
t = T1 + 1; : : : ; T1 +T2− 1 where a switch it 6= it+1 occurs, and there are 2(2− 1)k ways to assign
a distinct action to each of the k + 1 resulting blocks. This gives

M =

m∑
k=0

CkT2�12 ≤ 4 exp

(
(T2 − 1)H

(
1

T2 − 1

))
:

where H(x) = −x lnx − (1 − x) ln(1 − x) is the binary entropy function defined for x ∈ (0; 1).
Substituting this bound in

√
(T2 lnM)=2, we find that g satisfies

g ≤

√
T2

2

(
2 ln 2 + (T2 − 1)H(

1

T2 − 1
)

)
on any action sequence iT1+1; : : : ; is; is+1; : : : ; iT1+T2

. However, the randomized FESL-c requires to
explicitly manage an exponential number of compound actions in its straightforward implementation.
Then we propose FESL-s which can efficiently implement a generalized version of randomized
FESL-c that is able to achieve g. Specifically, FESL-s is derived from a variant of randomized
FESL-c where the initial weight distribution is not uniform. We have the following results.

Lemma 3. For all T2 > 1, if the randomized FESL-c is run using initial weights �1,T1
; �2,T1

≥ 0
such that AT1+T2

= �1,T1+T2
+ �2,T1+T2

≤ 1, then

T1+T2∑
t=T1+1

�‘(pt; yt) ≤
1

�
ln

1

AT1+T2

+
�

8
T2;

where

AT1+T2
=

2∑
i=1

�i,T1+T2
=

2∑
i=1

�i,T1
e�η

PT1+T2
t=T1+1 `(i,yt)

is the sum of the weights after T2 rounds.

Proof. From equation (3) mentioned in the last subsection, we know that

ln
AT1+T2

AT1

≤ −�
T1+T2∑
t=T1

�‘(pt; yt) +
�2

8
T2

where At =
∑2
i=1 �i,t =

∑2
i=1 e

�ηLSi
t . Since AT1

≤ 1, then we have

T1+T2∑
t=T1+1

�‘(pt; yt) ≤
1

�
lnAT1

− 1

�
lnAT1+T2

+
�T2

8

=
1

�
ln

1

AT1+T2

+
�T2

8
− 1

�
ln

1

AT1

≤ 1

�
ln

1

AT1+T2

+
�T2

8
:
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We write �0t(iT1+1; : : : ; iT1+T2) to denote the weight assigned at time t by the randomized FESL-c
to the compound action (iT1+1; : : : ; iT1+T2). For any fixed choice of the parameter � ∈ (0; 1), the
initial weights of the compound actions are defined by

�0T1
(iT1+1; : : : ; iT1+T2

) =
1

2

(
�

2

)(
1− � +

�

2

)T2�1

:

Then the way of updating weight is as follows:

�0t(iT1+1; : : : ; iT1+T2
) = �0T1

(iT1+1; : : : ; iT1+T2
) exp

(
−�

t∑
s=1

‘(is; ys)

)
:

Introducing the “marginalized” weights

�0T1
(iT1+1; : : : ; iT1+T2

) =
∑

it+1,...,iT1+T2

�0T1
(iT1+1; : : : ; it; it+1; : : : ; iT1+T2

)

for all t = T1 + 1; : : : ; T1 + T2, we obtain that FESL-s draws action i at time t+ 1 with probability
�0i,t=A

0
t, where A0t = �01,t + �02,t and

�0i,t =
∑

i1,...,it,it+2,...,in

�0t(iT1+1; : : : ; it; i; it+2; : : : ; iT1+T2
)

for t ≥ T1 + 1 and �0i,T1
= 1=2.

The initial weights are recursively computed as follows

�0T1
(i1) = 1=2;

�0T1
(iT1+1; : : : ; it+1) = �0T1

(iT1+1; : : : ; it)

(
�

2
+ (1− �)Ifit+1=itg

)
:

The following result shows that FESL-s is indeed an efficient version of randomized FESL-c.

Theorem 3. For all i = 1; 2; t = T1 + 1; : : : ; T1 + T2; � ∈ [0; 1], we have �i,t = �0i,t, where �i,t
is the weight of the i-th base learner at time t in FESL-s, and �0i,t is the weight of the conditional
distribution of action I 0t drawn at time t by randomized FESL-c run over the compound actions
(iT1+1; : : : ; iT1+T2) using initial weights �0T1

(iT1+1; : : : ; iT1+T2) set with the same value of �.
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Proof. We proceed by induction on t. For t = T1, �i,T1 = �0i,T1
= 1=2 for all i. For the induction

step, assume that �i,s = �0i,s for all i and s < t. We have

�0i,t =
∑

i1,...,it,it+2,...,in

�0t(iT1+1; : : : ; it; i; it+2; : : : ; iT1+T2
)

=
∑

iT1+1,...,it

exp

(
−�

t∑
s=1

‘(is; ys)

)
�0T1

(iT1+1; : : : ; it; i)

=
∑

iT1+1,...,it

exp

(
−�

t∑
s=1

‘(is; ys)

)
�0T1

(iT1+1; : : : ; it)
�0T1

(iT1+1; : : : ; it; i)

�0T1
(iT1+1; : : : ; it)

=
∑

iT1+1,...,it

exp

(
−�

t∑
s=1

‘(is; ys)

)
�0T1

(iT1+1; : : : ; it)

(
�

2
+ (1− �)Ifit=ig

)
(using the recursive definition of�0T1

)

=
∑
it

e�η`(it,yt)�0it,t�1

(
�

2
+ (1− �)Ifit=ig

)
=
∑
it

e�η`(it,yt)�it,t�1

(
�

2
+ (1− �)Ifit=ig

)
(by the induction hypothesis)

=
∑
it

vit,t

(
�

2
+ (1− �)Ifit=ig

)
(using (9).1 from “Dynamic Selection”)

= �i,t (using (9).2 from “Dynamic Selection”)

Then we have a general result for FESL-s.
Theorem 4. For all n ≥ T1 + 1, the goal of the FESL-s g satisfies

g =

n∑
t=T1+1

�‘(pt; yt)−
n∑

t=T1+1

‘(it; yt) ≤
2

�
ln 2 +

1

�
ln

1

(�=2)(1− �)n�2
+
�

8
n

for all action sequences iT1+1; : : : ; iT1+T2
.

Proof. For a compound action iT1+1; : : : ; iT1+T2
we have

ln�0T1+T2
(iT1+1; : : : ; iT1+T2

) = ln�0T1
(iT1+1; : : : ; iT1+T2

)− �
T1+T2∑
t=T1+1

‘(it; yt):

By definition of �0T1
,

�0T1
(iT1+1; : : : ; iT1+T2) =

1

N

(
�

2

)(
�

2
+ (1− �)

)T1+T2�2

≥ 1

2

(
�

2

)
(1− �)T1+T2�2:

Therefore, using this in the bound of Lemma 3 we get, for any sequence (iT1+1; : : : ; iT1+T2
),

n∑
t=1

�‘(pt; yt) ≤
1

�
ln

1

A0T1+T2

+
�

8
T2

≤ 1

�
ln

1

�0T1+T2
(iT1+1; : : : ; iT1+T2

)
+
�

8
T2

≤
n∑
t=1

‘(it; yt) +
1

�
ln 2 +

1

�
ln

2

�
− T2 − 2

�
ln(1− �) +

�

8
T2;

which concludes the proof.

5



95 189 283 377 471

Time

0

0.5

1.0

Lo
ss

(a) dna

101 201 301 401

Time

0.1

0.2

0.3

0.4

0.5

Lo
ss

(b) german

320 639 958 1277 1596

Time

0.2

0.4

0.6

0.8

Lo
ss

(c) kr-vs-kp

318 635 952 1269

Time

0.10

0.15

0.20

Lo
ss

(d) splice

129 257 385 513 641

Time

1

2

3

Lo
ss

(e) svmguide3 legend

Figure 1: The trend of loss with three baseline methods and the proposed methods on synthetic data.
The smaller the cumulative loss, the better.

With Lemma 3 and Theorem 4, we give the proof of Theorem 2 as follows.

Proof of Theorem 2. First, note that for � = 1=(T2 − 1)

ln
1

�(1− �)T2�2
= − ln

1

T2 − 1
− (T2 − 2) ln

T2 − 2

T2 − 1
= (T2 − 1)H(

1

T2 − 1
):

Using

� =

√
8

T2

(
2 ln 2 + (T2 − 1)H(

1

T2 − 1
)

)
in the bound of Theorem 4 we obtain that

T1+T2∑
t=T1+1

�‘(pt; yt)−
T1+T2∑
t=T1+1

‘(it; yt) ≤

√
T2

2

(
2 ln 2 + (T2 − 1)H(

1

T2 − 1
)

)
for all action sequences iT1+1; : : : ; iT1+T2 , namely,

LS12 ≤ min
T1+1�s�T1+T2

Ls +

√
T2

2

(
2 ln 2 +

H(�)

�

)

2 Additional Experiments

In this section, the remaining loss trend results of 5 synthetic datasets and 16 results of Reuter datasets
are presented. We also show the detailed setting of step size �t for each datasets.

As can be seen from Figure 1, the average cumulative loss of our methods is comparable to the best
of baseline methods on all datasets and. And FESL-s exhibits slightly smaller average cumulative
loss than FESL-c. We can also see from Figure 2 that, the average cumulative loss at any time of our
methods is comparable to the best of baseline methods. Specifically, at first, ROGD-u is better than
NOGD and our methods is comparable to ROGD-u. Afterwards, with more and more data coming,
NOGD becomes better, then our methods are comparable to NOGD. Moreover, FESL-s performs
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Figure 2: The trend of loss with three baseline methods and the proposed methods on Reuter data.
The smaller the cumulative loss is, the better. The average cumulative loss at any time of our methods
is smaller than the best of baseline methods.

worse than FESL-c in the beginning while afterwards, it becomes slightly better than FESL-c. Lastly,
ROGD-f always performs the worst among all the approaches.

In our experiments, we set the step size �t to be 1=(c
√
t) where c is searched in the range

{1; 10; 50; 100; 150}. Concretely, for synthetic datasets, we set c

• 1 for australian, credit-a, credit-g and svmguide3;
• 10 for diabetes and splice;
• 50 for german;
• 100 for kr-vs-kp;
• 150 for dna.

For Reuter datasets, we set c

• 10 for r.GR-IT, r.GR-SP, r.SP-FR;
• 50 for r.EN-FR, r.EN-IT, r.EN-SP, r.FR-GR, r.FR-IT, r.FR-SP, r.GR-EN, r.IT-EN, r.IT-FR,

r.IT-GR, r.IT-SP, r.SP-EN, r.SP-IT;
• 100 for r.FR-EN;
• 150 for r.EN-GR, r.GR-FR, r.SP-GR.
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