Supplementary Material: Optimal Algorithms for Lipschitz
Bandits with Heavy-tailed Rewards

A. Proof of Theorem 1
Theorem 1 Assume (1) and (2) hold. For sufficiently large T such that
) 1
logT —=(4 )7«
ogT <(4)
the regret of SDTM with parameter r > 0 satisfies
E[R(T)]  2rT + (4 T)™ (16No(r)log T) T+

where N.(r) is the r-covering number of the arm set X.

Proof. Letx, 2 argmax,cy (X) beanoptimal arm. By the definition of the oracle, there must exist k 2 [K] such that
X« 2 Xj, and hence D(X,; X)  2r. Since the expected reward function is Lipschitz, we have
(%) (X) D(xi%) 2r (17)

On the other hand, let X, 2 argmax,, ;7 (X:) be an optimal skeleton arm. By theoretical guarantees of UCB policies
used with the truncated mean estimator (Bubeck et al. 2013, Proposition 1), the expected difference between the cumulative
reward of the pulled arms and that of the optimal skeleton arm X, can be upper bounded as follows
" #
X X L .
E (X4) (X¢) (4 T)™< (16K log T )T+e: (18)
t=1 t=1
Combining (17) and (18) and recalling that K~ N.(r), we obtain
" #
X X . ]
E (X4) (X¢) 2rT + (4 T)7r< (16N.(r) log T ) T+e
t=1 t=1

where we use the fact that (Xj) (Xy).

B. Proof of Corollary 2
Corollary 2 We have

= N.(r) 0 r;@*1/9

rl/e
r=2-14eN,r>rg

and thus
R(T) O inf  roT +logT ry "9
( ) Tog(loi) 0 o8 0
@ Ta
where d. is the zooming dimension of (X; ), defined in (5).
Proof. \We have
< < Uo%%J Z tog, L+1 —p \do+1/c
N (r) gid=+i/e gid+i/ez 0 gida*ifes g (2=rg)*"<Z
rl/e IOg (2dz+l/e)
r=2-1:1€N,r>rg iEN:2—i>7r i=0 0

where Z is the zooming constant of (X; D).
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C. Proof of Theorem 3
Theorem 3 Assume (2) and (12) hold. With probability at least 1 2 , the regret of ADMM satisfies

R(T) inf roT+
ro€(0,1)
X N (r)

rl/e
r=2—14eN,r>rg

68(1027) log (e¥/8T2= )

where ~ is defined in (13) and N (r) is the r-zooming number of (X; ). Furthermore, by the first inequality in Corollary 2
we have s
R(T) ® Tt

where d. is the zooming dimension of (X; ), defined in (5).

Proof. We use the same notations as in the proof of Theorem 2 and propose the following lemmas, which are counterparts
of Lemmas 1, 2, 3, and 4 respectively. For brevity, we only prove Lemmas 5 and 6, and the proofs of Lemmas 7 and 8 can
be done in the same way as in appendices G and H respectively.

Lemma 5 Let R be the set comprised of all rounds in which Step 21 of Algorithm 4 is executed. Then, with probability at
least1 2 ,forall rounds t 2 R and all active arms x 2 A;, we have

jbi(x) (X)) e (X):

Proof. Fixt2 Randx 2 A,;. By Lemma 2 in Bubeck et al. (2013), with probability at least 1 %—‘Z we have

€ €

: : 16log (e1/8T2= ) T .+ 16log(et/®T2=) T
b (x X 12 )T 127) 7+ = ri+1(X):
b0 05 (12) 00 (127) ey 1 (x)
Taking the union bound over x 2 A; and t 2 R and noticing jA;j T;8t 2 R, we conclude the proof.
Lemma 6 With probability atleast 1 2 , for all rounds t 2 [T] and all active arms x 2 A;, we have
o )8
AX) 3 2ra1(X):
Proof.  Fixt 2 [T]. For each active arm x 2 A, there exist three different scenarios as follows.
(i) x is pulled by Step 4 or Step 10 of Algorithm 4 in round t. In this scenario, on one hand, we have
ng(x) 16log(e¥/®T2= ) +1
and hence
_.1 16log(er/8T2=) T 1 161og (e'/8T2=) T
r X) = (127) T+ 127) T+
rr1(x) = (127) n:(X) (127) 161og (e1/8T2= ) +1
P._ . 35 ™ 35 P 3 T 35 _P-3 * 1
3 2) T+ — =— 3 2 — — 3 2 — —P=
B 277 5 36 36 36 36 32

where the second inequality follows from the definition of ~ in (13) and the following fact: 161og (e*/8T2%= ) > 35
for T > 1 and 2 (0;1=2). On the other hang, let X, 2 argmax,c, (X) be an optimal arm. We have A(x) =
(X)  (X) D(X«X) 1. Thus, weobtain 3" 2r.c1(Xx)  A(X).

(ii) x is pulled by Step 12 of Algorithm 4 in round t. In this case, we havet 1 2 R and the arm selection rule implies

bi_1(X) +2ry(x)  by_1(X') +2r,(X); 8x" 2 Ay (19)
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Note that A, = A,_;. By Lemma 5, we get
(X)) bi_1(X)  re(X); by_1(X) (X)) r(X); 8x' 2 Ag: (20)
Combining (19) and (20), we obtain
(X) + 3r¢(x) (X') + ry(X'); 8x' 2 A (21)

Note that the execution of Step 12 implies X [.c.4,B(X; r:(x)). Thus, for the optimal arm x.. there must exist an active
arm X, 2 A; such that
D(X4; %) re(Xy)

which, together with the Lipschitz property of , indicates
(%) (Ke) Fre(Xa):
Combining the above inequality and (21) with substitution X’ = X, we obtain
(X) + 3r(x) (X4 ):

On the other hand, we have

ra() M) om0 T4
ri(x) n:(x) ne_1(x) +1 9
Therefore, weget3p§rt+l(x) 3r(x)  A(X):

(iii) x is not played in round t. In this scenario, let s be the last round in which x is pulled. Then, we have r;.1(X) = rs+1(X)
and the proof reduces to (i) or (ii).

Lemma 7 With probability atleast1 2 ,foralli=0;1;2;:::,
JAr()j  NL(27%):
Lemma 8 With probability atleast1 2 ,foralli=0;1;2;:::,
>

it1

nr(xX)A(X) 27
z€Ar(7)

1
€

(517)¢ 68log (€/8T2= )N, (27°):

The remaining proof is the same as that of Theorem 2 and is omitted here.

D. Proof of Theorem 4
21/¢.¢

Theorem 4 Fix an arm set X with diameter 1 and a parameter of moment 2 (0; 1]. Define = and

log 2
> N, (r)
R.(T)= inf roT +1logT g
(™) roe(©1) 8 o iienes ri/e
r=2"%1 , I 2T0

where N.(r) is the r-covering number of X. Then, for any T > 2 and any positive number R~ R.(T), there exists a set 1
of problem instances on X such that
(i) for each problem instance | 2 1, define

< N, (r
R.(T) = inf roT +logT #
r0€(0,1) - ri/e
r=2-%t4eN,r>rg
in which N (r) is the r-zooming number of I. We have R,(T) 3R=(8 logT):
(ii) for any algorithm A, there exists at least one problem instance 1 2 I on which the expected regret of A satisfies
E[R(T)] R=(2560 logT):

Proof.  Our proof is inspired by Slivkins (2014) and makes use of the needle-in-the-haystack technique, which is firstly
proposed by Auer et al. (2002b) for analyzing multi-armed bandits and then extended to Lipschitz bandits by Kleinberg et al.
(2013).
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Step 1 (Constructing instance set 1) \We begin with the following lemma.

Lemma 9 Define

. Nc(rO)
RL(T) = f  roT +logT
c( ) Tog(lo,l) ol + og r(l)/e
Thenforany T > 2, R.(T) R.(T).
Proof.  Since N.(r) is non-increasing with r, we have
X N.(r) X )
Ro(T)= inf roT +1logT 1 inf  roT +1logT Nc(ro) r -«
roc(0.1) r=2-ieNrzrg | a roc®. r=2-1:€N,r>ro
in which the last term can be upper bounded as follows
> ) |_|0$<‘70J . Z log, %+l L (2:ro)l/€ 1 21/6
r - = 2 2e di = ] 17 1/E:
r=2-i%EN,r>ro i=0 0 og (21/) log2 rg

Recalling = 2|;/g<-26 > 1, we conclude the proof.

FixT >2andR R.(T). Letr =
N as follows.

sTaogTy and N = max(2;bT ri+1/cc). Based on Lemma 9, we can bound r and

Lemma 10 We say a subset S X is an r-packing of X if the distance between any two points in S is at least r, i.e.,
inf, ,es D(U;v) 1. Let N,(r) denote the r-packing number of X, defined as the maximal number of points in an
r-packing of X:
N, (r) = maxfjSj : S is an r-packing of X g:
We have
r<1=2 and N N,(r):

Proof.  Define function f(r) T]\l’if/{ . Since ¥(1) = 1, lim,_,o f(r) = +1, and T(r) is decreasing on (0; 1), there must
existb2 (0;1) suchthat f(b) T  f(b=2). From the first inequality, we obtain

R R.(T) RT) bT + ij(/?)logT b T(1+1logT)
which implies r % = I < 1. From the second inequality, we have
Tree Tyt TR gt )
(b=2) 'Y/
We conclude the proof by the fact that N.(r)  N,(r) (Kleinberg etal., 2013) and 2 N, (r).
The above lemma ensures that we can find a set of arms U = fuy;:::;uxg X such thatinf, ;e D(X;y)  r. Based on
U, we construct a set of problem instances I = fl4;:::; 1yg. Letus fix i 2 [N] and describe the construction of I;: the
expected reward function ; is defined as
8
3% x=u
xng%; X=U;; j2[N]andj & i (22)
~max(7; max i(u)  D(x;u)); otherwise
ue

and the reward distributions are defined by

C

. . S rt/e; =r1/e
Pr(yjx) = pi(yjx) = t0 Y :

1 LeorYe y =0 (23)

One can show that for i = 1;2;:::; N, ; is Lipschitz and the (1 + )-th moment of p; is upper bounded by 7=8.
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Step 2 (Proving i) Let I be a problem instance in I. Recall the definition of -optimal region: X, = fx 2 X : =2 <
A(x)  g. Itisclear that for 3r=4, we have X, = @ and thus N, ( ) = 0. It follows that

R I = lI]f rOI + Og | IrT z |2
( ) er06(071) =2—i:3cN P> 9 / p P>3 / 8 IOg I
p= eN, T =2 t4€eN, a’

where the last inequality is due to r = W}ilogn-

Step 3 (Proving ii) Following the framework of Kleinberg et al. (2013), we first introduce an auxiliary problem instance
Iy in which the expected reward function ¢ is defined as

G, x =u;; j 2[N]
O(X) = InaX(%; maz/){( o(U) D(X, U)), otherwise
ue
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E. Proof of Lemma 1
Lemma 1 With probability atleast 1 2 , for all rounds t 2 [T] and all active arms x 2 A;, we have
jbi(x) (X)) e (X):

Proof. Fixt2 [T]and x 2 A;. By Lemma 1 in Bubeck et al. (2013), with probability at least 1 % the following holds

) ) 1 log (T2=) T _ 1 log(T2=) T
b, (x X 4 T —— 7 4714 =~ 7
b 60l ne(x) ne(x)

Taking the union bound over x 2 A; andt = 1;2;:::; T and noticing jA;j  T;8t 2 [T], we conclude the proof.

= r+1(X):

F. Proof of Lemma 2
Lemma 2 With probability atleast 1 2 , for all rounds t 2 [T] and all active arms x 2 A;, we have

A(X) 3p§rt+1(x):

Proof. Fixt 2 [T]. For each active arm x 2 A, there exist three different scenarios as follows.

(i) x is pulled by Step 7 of Algorithm 2 in round t. In this scenario, on one hand, we have n;(x) = 1 and

log (T2= 1+e 1

where we use the fact that log (T?= ) log4 1for T > 1. On the other hand, let X, 2 argmax,., (X) be an optimal
arm. We have

A(X) = (X«) (X) DX x) 1
where ti’tgjirst inequality holds since is Lipschitz, and the second inequality is due to the assumption in (2). Thus, we
obtain 3" 2r;+1(X)  A(X).

(it) x is pulled by Step 9 of Algorithm 2 in round t. In this case, we havet 2 and n;_1(x) 1 and the arm selection rule
implies

bi_1(X) +2ry(x)  by_1(X') +2r,(X); 8x' 2 A (25)
Note that A, = A,_;. By Lemma 1, we get
(X)  bi_1(X)  ry(x); bi_1(X) (X')  ry(x); 8x' 2 A (26)

Combining (25) and (26), we obtain
(X) + 3r(x) (X)) +ry(X); 8x' 2 A (27)
Note that the execution of Step 9 implies X [.c.4,B(X; r:(x)). Thus, for the optimal arm X, there must exist an active
arm X, 2 A; such that
D(X4; %) re(Xy)

which, together with the Lipschitz property of , indicates

() (Re) + (%)
Combining the above inequality and (27) with substitution X’ = X,, we obtain

(X) +3r:(x) (%)
On the other hand, we have

€ €

s N T mes g
ri(X) n:(x) ne_1(x) +1 9
Therefore, Weget3p§rt+l(x) 3r(x)  A(X):

(iii) x is not played in round t. In this scenario, let s be the last round in which x is pulled. Then, we have ry+1(X) = rs+1(X)
and the proof reduces to (i) or (ii).
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G. Proof of Lemma 3
Lemma 3 With probability at least1 2 ,foralli 2 N,

JAr(D)]  NL(27%):

Proof. By the definition of the r-zooming number, for i = 0;1;2;:::, the set A(i) can be covered by not more than

N (27%) balls of radius at most 51 In the following, we show that each of these balls contains at most one arm from

Ar(i). In fact, suppose that there exist two arms u; v 2 Ar(i) falling into the same ball. On one hand, we have

D(u;v) 9 12i: (28)

On the other hand, without loss of generality, we assume arm u is added into the active arm set At before arm v. Let t be
the time when arm v is added into Ar. The execution of Algorithm 2 ensurest 2 and

D(u;Vv) > r(u): (29)

By Lemma 2, we have

A(u) 1 1
rg(U) = rg+1(U = > — _> -
W= B> et o

which, together with (28) and (29), leads to a contradiction. Thus, jAr(i)j N.(27%).

H. Proof of Lemma 4

Lemma 4 With probability at least 1 2 ,forall i 2 N,
>

it+1 e+1

np(X)A(X) 2+« 17«
z€Ar (i)

“Flog (T2 )NL(277):

Proof.  For any arm X 2 Ar(i), by Lemma 2 we have

P o log(T2=) T

Rearranging the above inequality, we obtain

it1 e+

nr(X)AX) 175 Flog (T2= )A(X)"F 2% 17 ~%log(T2= )

where the second inequality is due to A(x) > 2~C*1: We finish the proof by applying Lemma 3.

L. Proof of Lemma 11

Lemma 11 The Kullback-Leibler divergence from Q, to Qg satisfies

KL(Qo;Qx)  39=200:

Proof.  We first bound the KL divergence from pg to p:

—_

o(x)rt/e

1 X rl/E 1 —_—
+( 0( ) ) 0g 1 k(x)rl/e

KL(po;px) = o(X)r'/“log

In the following, we consider two different scenarios, i.e.,, x 2 X S and x 2 S;.
(i()x2X Si. By (24), we have (X) = o(X) and thus

KL(po; p) = 0: (30)
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(if) x 2 Si. By (24), we have (x) &(X) o(X) 4+ r=8 which implies
o(X ri/e
O(x)rl/é

1 0 (X) ri/e
1 O(x)rl/e rl+l/6:8

KL(Poipr)  o(x)r*/“log +(1 o)rt/)log

r1+1/6:8

1 ri/e
( o(X)r™c) 1 o(X)ri/e  ri+ije=g

r1+1/e:8

=1 o(x)r¥/e  ri*l/e=g 4 ri*l/e=g)

rl+i/e pl+1/e=g 2
= + (31)
r1+1/e r1+1/6:8 2
8 1 7riies
pl+1/e pl+1/e=g 2
8 + 4ri+1/e 7r1+1/e:8
_ B vy
100

where the second inequality follows from the well-known inequality: loga a 1; 8a > 0, the third inequality is due to
0(X) 2 [r=2; 3r=4], and the last inequality holds since 4r**/¢ 4 (1=2)*%¢ 4 (1=2)2 =1.

We continue the proof of Lemma 11 as follows. Denote by KL(; j ) the conditional KL divergence also known as

> S
KL@5QLin Y=~ Qh(h!)log TN

hte 't W
_ Qi(hiylog I Qblyrixiih™™)
e T QU Qg X )
> QY(y: j e h D)
= t(ht)log —<oWtJXeTl )
Qolh)los QL(ye i xi;ht=1)

hte t
where the first equality is the definition of conditional KL divergence and the last equality is due to the fact that the
distribution of x, given h*=* depends only on the algorithm A. We proceed as follows

X Qt( 'X-ht—l)
KL(QL:QLjht1) = L(ht)log <oWelXel =)
Qi Q) . tQO( Jlos Q. (ye i xe;ht=1)
Z H —
_ = > ot ixih Ll QUEIXihTH
ni-te =1 _TEXy ero /ey Qklye I xih™2)
X Z t t—1
= KL (po; px) d Qp(X¢; h* ™)
pt-1g t—1_Tt€X

d Qp(x;;h'™h)

X<
(30) _
= KL(po; ) d Q(x¢; h* 1)
pt-lg t—1 1 €Sk
ey X

£r1+1/ed QB(Xt; ht—l)
ht—lg t—1 1 €Sk 100

13 . )
— mrlﬂ/ Qb(x: 2 Sy):
Finally, by the chain rule of KL divergence we have

1

X X
KL(Qoi Qi) = KL(QF;Qf) = KL@5 QLN 2 ri/eQh(x, 2.8y) = 1o/ g, 2,
t=1 t=1
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where we use the convention that h® = . Recalling Eg,[Zx] T=N and N = max(2; bTr'*1/<c), we obtain
3 —(1+1/¢)
EQO [Zk] 5 r

which completes the proof.



