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Abstract
To cope with changing environments, recent de-
velopments in online learning have introduced
the concepts of adaptive regret and dynamic re-
gret independently. In this paper, we illustrate
an intrinsic connection between these two con-
cepts by showing that the dynamic regret can be
expressed in terms of the adaptive regret and the
functional variation. This observation implies
that strongly adaptive algorithms can be directly
leveraged to minimize the dynamic regret. As a
result, we present a series of strongly adaptive al-
gorithms that have small dynamic regrets for con-
vex functions, exponentially concave functions,
and strongly convex functions, respectively. To
the best of our knowledge, this is the first time that
exponential concavity is utilized to upper bound
the dynamic regret. Moreover, all of those adap-
tive algorithms do not need any prior knowledge
of the functional variation, which is a significant
advantage over previous specialized methods for
minimizing dynamic regret.

1. Introduction
Online convex optimization is a powerful paradigm for se-
quential decision making (Zinkevich, 2003). It can be vie-
wed as a game between a learner and an adversary: In the
t-th round, the learner selects a decision wt 2 Ω, simulta-
neously the adversary chooses a function ft(�) : Ω 7! R,
and then the learner suffers an instantaneous loss ft(wt).
This study focuses on the full-information setting, where the
learner can query the value and gradient of ft (Cesa-Bianchi
& Lugosi, 2006). The goal of the learner is to minimize the
cumulative loss over T periods . The standard performance
measure is regret, which is the difference between the loss
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incurred by the learner and that of the best fixed decision in
hindsight, i.e.,

Regret(T ) =

TX
t=1

ft(wt)� min
w∈


TX
t=1

ft(w).

The above regret is typically referred to as static regret in the
sense that the comparator is time-invariant. The rationale
behind this evaluation metric is that one of the decision in
Ω is reasonably good over the T rounds. However, when
the underlying distribution of loss functions changes, the
static regret may be too optimistic and fails to capture the
hardness of the problem.

To address this limitation, new forms of performance mea-
sure, including adaptive regret (Hazan & Seshadhri, 2007;
2009) and dynamic regret (Zinkevich, 2003; Hall & Willett,
2013), were proposed and received significant interest re-
cently. Following the terminology of Daniely et al. (2015),
we define the strongly adaptive regret as the maximum static
regret over intervals of length τ , i.e.,

SA-Regret(T, τ)

= max
[s,s+τ−1]⊆[T ]

 
s+τ−1X
t=s

ft(wt)� min
w∈


s+τ−1X
t=s

ft(w)

!
.

(1)

Minimizing the adaptive regret enforces the learner to have
a small static regret over any interval of length τ . Since the
best decision for different intervals could be different, the
learner is essentially competing with a changing comparator.

A parallel line of research introduces the concept of dynamic
regret, where the cumulative loss of the learner is compared
against a comparator sequence u1, . . . ,uT 2 Ω, i.e.,

D-Regret(u1, . . . ,uT ) =

TX
t=1

ft(wt)�
TX
t=1

ft(ut). (2)

It is well-known that in the worst case, a sublinear dynamic
regret is impossible unless we impose some regularities on
the comparator sequence or the function sequence (Jadba-
baie et al., 2015). A representative example is the functional
variation defined below

VT =

TX
t=2

max
w∈

jft(w)� ft−1(w)j. (3)
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Besbes et al. (2015) have proved that as long as VT is
sublinear in T , there exists an algorithm that achieves a
sublinear dynamic regret. Furthermore, a general restar-
ting procedure is developed, and it enjoys O(T 2/3V

1/3
T )

andO(log T
p
TVT ) rates for convex functions and strongly

convex functions, respectively. However, the restarting pro-
cedure can only be applied when an upper bound of VT is
known beforehand, thus limiting its application in practice.

While both the adaptive and dynamic regrets aim at coping
with changing environments, little is known about their re-
lationship. This paper makes a step towards understanding
their connections. Specifically, we show that the strongly
adaptive regret in (1), together with the functional varia-
tion, can be used to upper bound the dynamic regret in (2).
Thus, an algorithm with a small strongly adaptive regret is
automatically equipped with a tight dynamic regret. As a
result, we obtain a series of algorithms for minimizing the
dynamic regret that do not need any prior knowledge of the
functional variation. The main contributions of this work
are summarized below.

� We provide a general theorem that upper bounds the
dynamic regret in terms of the strongly adaptive regret
and the functional variation.

� For convex functions, we show that the strongly adap-
tive algorithm of Jun et al. (2017) has a dynamic regret
of O(T 2/3V

1/3
T log1/3 T ), which matches the mini-

max rate (Besbes et al., 2015), up to a polylogarithmic
factor.

� For exponentially concave functions, we propose a
strongly adaptive algorithm that allows us to control
the tradeoff between the adaptive regret and the com-
putational cost explicitly. Then, we demonstrate that
its dynamic regret is O(d

p
TVT log T ), where d is the

dimensionality. To the best of our knowledge, this is
the first time that exponential concavity is utilized in
the analysis of dynamic regret.

� For strongly convex functions, our proposed algorithm
can also be applied and yields a dynamic regret of
O(
p
TVT log T ), which is also minimax optimal up to

a polylogarithmic factor.

2. Related Work
We give a brief introduction to previous work on static, adap-
tive, and dynamic regrets in the context of online convex
optimization.

2.1. Static Regret

The majority of studies in online learning are focused on
static regret (Shalev-Shwartz & Singer, 2007; Langford
et al., 2009; Shalev-Shwartz, 2011; Zhang et al., 2013).
For general convex functions, the classical online gradient

descent achieves O(
p
T ) and O(log T ) regret bounds for

convex and strongly convex functions, respectively (Zinke-
vich, 2003; Hazan et al., 2007; Shalev-Shwartz et al., 2007).
Both the O(

p
T ) and O(log T ) rates are known to be mini-

max optimal (Abernethy et al., 2009). When functions are
exponentially concave, a different algorithm, named online
Newton step, is developed and enjoys an O(d log T ) regret
bound, where d is the dimensionality (Hazan et al., 2007).

2.2. Adaptive Regret

The concept of adaptive regret is introduced by Hazan &
Seshadhri (2007), and later strengthened by Daniely et al.
(2015). Specifically, Hazan & Seshadhri (2007) introduce
the weakly adaptive regret

WA-Regret(T )

= max
[s,q]⊆[T ]

 
qX
t=s

ft(wt)� min
w∈


qX
t=s

ft(w)

!
.

To minimize the adaptive regret, Hazan & Seshadhri (2007)
have developed two meta-algorithms: an efficient algorithm
with O(log T ) computational complexity per iteration and
an inefficient one with O(T ) computational complexity per
iteration. These meta-algorithms use an existing online
method (that was possibly designed to have small static
regret) as a subroutine.1 For convex functions, the effi-
cient and inefficient meta-algorithms have O(

p
T log3 T )

and O(
p
T log T ) regret bounds, respectively. For expo-

nentially concave functions, those rates are improved to
O(d log2 T ) and O(d log T ), respectively. We can see that
the price paid for the adaptivity is very small: The rates of
weakly adaptive regret differ from those of static regret only
by logarithmic factors.

A major limitation of weakly adaptive regret is that it does
not respect short intervals well. Taking convex functions as
an example, the O(

p
T log3 T ) and O(

p
T log T ) bounds

are meaningless for intervals of length O(
p
T ). To over-

come this limitation, Daniely et al. (2015) proposed the
strongly adaptive regret SA-Regret(T, τ) which takes the
length of the interval τ as a parameter, as indicated in
(1). From the definitions, we have SA-Regret(T, τ) �
WA-Regret(T ), but it does not mean the notation of we-
akly adaptive regret is stronger, because an upper bound for
WA-Regret(T ) could be very loose for SA-Regret(T, τ)
when τ is small.

If the strongly adaptive regret is small for all τ < T , we can
guarantee the learner has a small regret over any interval of

1For brevity, we ignored the factor of subroutine in the state-
ments of computational complexities. The O(·) computational
complexity should be interpreted as O(·) × s space complexity
and O(·) × t time complexity, where s and t are space and time
complexities of the subroutine per iteration, respectively.
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any length. In particular, Daniely et al. (2015) introduced
the following definition.

Definition 1 Let R(τ) be the minimax static regret bound
of the learning problem over τ periods. An algorithm is
strongly adaptive, if

SA-Regret(T, τ) = O(poly(log T ) �R(τ)), 8τ.

It is easy to verify that the meta-algorithms of Hazan &
Seshadhri (2007) are strongly adaptive for exponentially
concave functions,2 but not for convex functions. Thus, Da-
niely et al. (2015) developed a new meta-algorithm that satis-
fies SA-Regret(T, τ) = O(

p
τ log T ) for convex functions,

and thus is strongly adaptive. The algorithm is also efficient
and the computational complexity per iteration is O(log T ).
Later, the strongly adaptive regret of convex functions was
improved to O(

p
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3. A Unified Adaptive Algorithm
In this section, we introduce a unified approach for minimi-
zing the adaptive regret of exponentially concave functions,
as well as strongly convex functions.
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Definition 3 (Base-K Ending Time) Let K be an integer,
and the representation of t in the base-K number system as

t =
X
τ≥0

βτK
τ

where 0 � βτ < K, for all τ � 0. Let k be the smallest
integer such that βk > 0, i.e., k = minfτ : βτ > 0g. Then,
the base-K ending time of t is defined as

EK(t) =
X

τ≥k+1

βτK
τ +Kk+1.

In other words, the ending time is the number represented
by the new sequence obtained by setting the first nonzero
element in the sequence β0, β1, . . . to be 0 and adding 1 to
the element after it.

Let’s take the decimal system as an example (i.e., K = 10).
Then,

E10(1) = E10(2) = � � � = E10(9) = 10,

E10(11) = E10(12) = � � � = E10(19) = 20,

E10(10) = E10(20) = � � � = E10(90) = 100.

3.3. Theoretical Guarantees

When the base-K ending time is used in Algorithm 1, we
have the following properties.

Lemma 1 Suppose we use the base-K ending time in Algo-
rithm 1.

1. For any t � 1, we have

jStj � (blogK tc+ 1) (K � 1) = O

�
K log t

logK

�
.

2. For any interval I = [r, s] � [T ], we can always
find m segments Ij = [tj , e

tj � 1], j 2 [m] with
m � dlogK(s� r + 1)e+ 1, such that t1 = r, etj =
tj+1, j 2 [m� 1], and etm > s.

The first part of Lemma 1 implies that the size of St is
O(K log t/ logK). An example of St in the decimal system
is given below.

S486 =

8><>:
481, 482, . . . , 486,

410, 420, . . . , 480,

100, 200, . . . , 400

9>=>; .

The second part of Lemma 1 implies that for any interval
I = [r, s], we can find O(log s/ logK) experts such that
their survival periods cover I . Again, we present an exam-
ple in the decimal system: The interval [111, 832] can be
covered by

[111, 119], [120, 199], and [200, 999]

which are the survival periods of experts E111, E120,
and E200, respectively. Recall that E10(111) = 120,
E10(120) = 200, and E10(200) = 1000.

We note that a similar strategy for deciding the ending time
was proposed by György et al. (2012) in the study of “pre-
diction with expert advice”. The main difference is that their
strategy is built upon base-2 number system and introduces
an additional parameter g to compromise between the com-
putational complexity and the regret, in contrast our method
relies on base-K number system and uses K to control the
tradeoff. Lemma 2 of György et al. (2012) indicates an
O(g log t) bound on the number of alive experts, which is
worse than our O(K log t/ logK) bound by a logarithmic
factor.

To present adaptive regret bounds, we introduce the follo-
wing common assumption.

Assumption 1 Both the gradient and the domain are boun-
ded.

� The gradients of all the online functions are bounded
by G, i.e., maxw∈
 krft(w)k � G for all ft.

� The diameter of the domain Ω is bounded by B, i.e.,
maxw,w′∈
 kw �w′k � B.

Based on Lemma 1, we have the following theorem regar-
ding the adaptive regret of exp-concave functions.

Theorem 1 Suppose Assumption 1 holds, Ω � Rd, and all
the functions are α-exp-concave. If online Newton step is
used as the subroutine in Algorithm 1, we have

sX
t=r

ft(wt)� min
w∈


sX
t=r

ft(w)

�
�

(5d+ 1)m+ 2

α
+ 5dmGB

�
log T

where [r, s] � [T ] and m � dlogK(s� r + 1)e+ 1. Thus,

SA-Regret(T, τ)

�
�

(5d+ 1)m̄+ 2

α
+ 5dm̄GB

�
log T = O

�
d log2 T

logK

�
where m̄ = dlogK τe+ 1.

From Lemma 1 and Theorem 1, we observe that the adaptive
regret is a decreasing function of K, while the computati-
onal cost is an increasing function of K. Thus, we can
control the tradeoff by tuning the value of K. Specifically,
Lemma 1 indicates the proposed algorithm has

(blogK T c+ 1) (K � 1) = O

�
K log T

logK

�
computational complexity per iteration. On the other hand,
Theorem 1 implies that for α-exp-concave functions that



Dynamic Regret of Strongly Adaptive Methods

Table 1. Efficiency and Effectiveness Tradeoff
K Complexity Adaptive Regret

2 O(log T ) O(d log2 T )
dT 1/γe O(γT 1/γ) O(γd log T )
T O(T ) O(d log T )

satisfy Assumption 1, the strongly adaptive regret of Algo-
rithm 1 is�

(5d+ 1)m̄+ 2

α
+ 5dm̄GB

�
log T = O

�
d log2 T

logK

�
where d is the dimensionality and m̄ = dlogK(τ)e+ 1.

We list several choices of K and the resulting theoretical
guarantees in Table 1, and have the following observations.

� When K = 2, we recover the guarantee of the efficient
algorithm of Hazan & Seshadhri (2007), and when
K = T , we obtain the inefficient one.

� By setting K = dT 1/γe where γ > 1 is a small con-
stant, such as 10, the strongly adaptive regret can be
viewed as O(d log T ), and at the same time, the com-
putational complexity is also very low for a large range
of T .

Next, we consider strongly convex functions.

Definition 4
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upper bound of strongly adaptive regret, and then choose
any sequence of intervals to obtain a concrete upper bound.
In particular, the choice of the intervals may depend on the
(possibly unknown) functional variation.

4.2. Convex Functions

For convex functions, we choose the meta-algorithm of Jun
et al. (2017) and take the online gradient descent as its
subroutine. The following theorem regarding the adaptive
regret can be obtained from that paper.

Theorem 4 Under Assumption 1, the meta-algorithm of
Jun et al. (2017) is strongly adaptive with

SA-Regret(T, τ)

�
�

12BGp
2� 1

+ 8
p

7 log T + 5

�p
τ = O(

p
τ log T ).

From Theorems 3 and 4, we derive the following bound for
the dynamic regret.

Corollary 5 Under Assumption 1, the meta-algorithm of
Jun et al. (2017) satisfies

D-Regret(w∗1, . . . ,w
∗
T )

�max

8><>:
(c+ 9

p
7 log T + 5)

p
T

(c+ 8
p

5)T 2/3V
1/3
T

log1/6 T
+ 24T 2/3V

1/3
T log1/3 T

=O
�

max
np

T log T , T 2/3V
1/3
T log1/3 T

o�
where c = 12BG/(

p
2� 1).

According to Theorem 2 of Besbes et al. (2015), we know
that the minimax dynamic regret of convex functions is
O(T 2/3V

1/3
T ). Thus, our upper bound is minimax optimal

up to a polylogarithmic factor. Although the restarted online
gradient descent of Besbes et al. (2015) achieves a dyna-
mic regret of O(T 2/3V

1/3
T ), it requires to know an upper

bound of the functional variation VT . In contrast, the meta-
algorithm of Jun et al. (2017) does not need any prior kno-
wledge of VT . We note that the meta-algorithm of Daniely
et al. (2015) can also be used here, and its dynamic regret is
on the order of max

np
T log T, T 2/3V

1/3
T log2/3 T

o
.

4.3. Exponentially Concave Functions

We proceed to consider exp-concave functions, defined in
Definition 2. Exponential concavity is stronger than convex-
ity but weaker than strong convexity. It can be used to model
many popular losses used in machine learning, such as the
square loss in regression, logistic loss in classification and
negative logarithm loss in portfolio management (Koren,
2013).

For exp-concave functions, we choose Algorithm 1 in this
paper, and take the online Newton step as its subroutine.
Based on Theorems 1 and 3, we derive the dynamic regret
of the proposed algorithm.

Corollary 6 Let K = dT 1V .
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and its dynamic regret satisfies

D-Regret(w∗1, . . . ,w
∗
T )

�max

8>>><>>>:
γG2

λ
+

�
5γG2

λ
+ 2

�
log T

γG2

λ

s
TVT
log T

+

�
5γG2

λ
+ 2

�p
TVT log T

=O
�

max
n

log T,
p
TVT log T

o�
.

According to Theorem 4 of Besbes et al. (2015), the
minimax dynamic regret of strongly convex functions is
O(
p
TVT ), which implies our upper bound is almost mini-

max optimal. By comparison, the restarted online gradient
descent of Besbes et al. (2015) has a dynamic regret of
O(log T

p
TVT ), but it requires to know an upper bound of

VT .

5. Analysis
We here present the proof of Theorem 3. The omitted proofs
are provided in the supplementary.

5.1. Proof of Theorem 3

First, we upper bound the dynamic regret in the following
way

D-Regret(w∗1, . . . ,w
∗
T )

=

kX
i=1

 
qiX
t=si

ft(wt)�
qiX
t=si

min
w∈


ft(w)

!

=

kX
i=1

0BBBB@
qiX
t=si

ft(wt)� min
w∈


qiX
t=si

ft(w)| {z }
:=ai

+ min
w∈


qiX
t=si

ft(w)�
qiX
t=si

min
w∈


ft(w)| {z }
:=bi

1CCCCA .

(5)

From the definition of strongly adaptive regret, we can upper
bound ai by

qiX
t=si

ft(wt)� min
w∈


qiX
t=si

ft(w) � SA-Regret(T, jIij).

To upper bound bi, we follow the analysis of Proposition 2

of Besbes et al. (2015):

min
w∈


qiX
t=si

ft(w)�
qiX
t=si

min
w∈


ft(w)

= min
w∈


qiX
t=si

ft(w)�
qiX
t=si

ft(w
∗
t )

�
qiX
t=si

ft(w
∗
si)�

qiX
t=si

ft(w
∗
t )

�jIij � max
t∈[si,qi]

�
ft(w

∗
si)� ft(w

∗
t )
�
.

(6)

Furthermore, for any t 2 [si, qi], we have

ft(w
∗
si)� ft(w

∗
t )

=ft(w
∗
si)� fsi(w

∗
si) + fsi(w

∗
si)� ft(w

∗
t )

�ft(w∗si)� fsi(w
∗
si) + fsi(w

∗
t )� ft(w∗t )

�2VT (i).

(7)

Combining (6) with (7), we have

min
w∈


qiX
t=si

ft(w)�
qiX
t=si

min
w∈


ft(w) � 2jIij � VT (i).

Substituting the upper bounds of ai and bi into (5), we arrive
at

D-Regret(w∗1, . . . ,w
∗
T )

�
kX
i=1

(SA-Regret(T, jIij) + 2jIij � VT (i)) .

Since the above inequality holds for any partition of [1, T ],
we can take minimization to get a tight bound.

6. Conclusions and Future Work
In this paper, we demonstrate that the dynamic regret can
be upper bounded by the adaptive regret and the functional
variation, which implies strongly adaptive algorithms are
automatically equipped with tight dynamic regret bounds.
As a result, we are able to derive dynamic regret bounds
for convex functions, exp-concave functions, and strongly
convex functions. Moreover, we provide a unified approach
for minimizing the adaptive regret of exp-concave functions,
as well as strongly convex functions.

The adaptive-to-dynamic conversion leads to a series of dy-
namic regret bounds in terms of the functional variation.
As we mentioned before, dynamic regret can also be up-
per bounded by other regularities such as the path-length.
It is interesting to investigate whether those kinds of up-
per bounds can also be established for strongly adaptive
algorithms.
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