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Abstract

While the conventional compressive sensing as-

sumes measurements of infinite precision, one-

bit compressive sensing considers an extreme

setting where each measurement is quantized to

just a single bit. In this paper, we study the vector

recovery problem from noisy one-bit measure-

ments, and develop two novel algorithms with

formal theoretical guarantees. First, we propose

a passive algorithm, which is very efficient in

the sense it only needs to solve a convex opti-

mization problem that has a closed-form solu-

tion. Despite the apparent simplicity, our theoret-

ical analysis reveals that the proposed algorithm

can recover both the exactly sparse and the ap-

proximately sparse vectors. In particular, for a

sparse vector with s nonzero elements, the sam-

ple complexity is O(s log n/ǫ2), where n is the

dimensionality and ǫ is the recovery error. This

result improves significantly over the previous-

ly best known sample complexity in the noisy

setting, which is O(s log n/ǫ4). Second, in the

case that the noise model is known, we devel-

op an adaptive algorithm based on the principle

of active learning. The key idea is to solicit the

sign information only when it cannot be inferred

from the current estimator. Compared with the

passive algorithm, the adaptive one has a lower

sample complexity if a high-precision solution is

desired.

Proceedings of the 31
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1. Introduction

Compressive sensing is designed to recover a sparse sig-

nal from a small number of linear measurements (Donoho,

2006; Candes & Tao, 2006). A variant of com-

pressive sensing, named one-bit compressive sensing,

has attracted considerable interests over the past few

years (Boufounos & Baraniuk, 2008). Unlike the con-

ventional compressive sensing which relies on real-valued

measurements, in one-bit compressive sensing, each mea-
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• Unlike previous studies of one-bit compressive

sensing that require solving optimization problem-

s (Plan & Vershynin, 2013b), the proposed algorithm

has a closed-form solution, making it computationally

attractive.

• Our analysis shows that in the case of noisy one-bit

measure, the proposed algorithm improves the sam-

ple complexity from O(s log n/ǫ4) to O(s log n/ǫ2)
when the target signal is an exactly s-sparse n-

dimensional vector.

• We develop a novel adaptive algorithm to fur-

ther reduce the number of one-bit measure-

ments. When the noisy model is known, the

proposed adaptive algorithm improves the sample

complexity to O(min(s log n/ǫ2, s
√

n log n/ǫ))
if the target vector is exactly s-sparse and to

O(min(s log n/ǫ4, s
√

n log n/ǫ3)) if the target vector

is approximately s-sparse (i.e., ‖x∗‖1/‖x‖2 ≤ √
s).

2. Related Work

One-bit compressive sensing was first introduced

in (Boufounos & Baraniuk, 2008), where only

the noiseless one-bit measure is considered. Let

U = [u1, . . . ,um] ∈ R
n×m be a known measurement

matrix, and y = [y1, . . . , ym]⊤ be the m-dimensional

one-bit measurement, where yi = sign(x⊤
∗ ui). The

authors propose to recover the direction of target signal x∗
by solving the following optimization problem

min
x

‖x‖1 s. t. y ◦ (U⊤x) ≥ 0, ‖x‖2 = 1 (1)

where ◦ stands for the element-wise product between two

vectors. One problem with (1) is that it requires solving

a non-convex optimization problem. A provable optimiza-

tion algorithm was proposed in (Laska et al., 2011) to find

a stationary point of (1). However, none of these two works

provide a formal guarantee on the sample complexity.

In (Jacques et al., 2013), the authors study a similar formu-

lation by replacing ‖x‖1 in (1) with ‖x‖0, and show a sam-

ple complexity of O(s log n/ǫ) for recovering the direction

of a s-sparse vector. However, it remains unsolved as how

to efficiently solve the corresponding non-convex optimiza-

tion problem is unclear. Gopi et al. (2013) developed an ef-

ficient two-stage algorithm for one-bit compressive sensing

that achieves a sample complexity of O(s log n/ǫ).

The first convex formulation for one-bit compressive sens-

ing was proposed in (Plan & Vershynin, 2013a). It solves

the following linear programming problem

min
x

‖x‖1 s. t. y ◦ (U⊤x) ≥ 0, ‖U⊤x‖1 = m (2)

An important property of the formulation in (2) is that it can

recover not only the exactly sparse vector but also the ap-

proximately sparse vector (i.e., ‖x∗‖1/‖x‖2 ≤ √
s). How-

ever, a major drawback of this study is the sample com-

plexity, which is O(s log2 n/ǫ5), exhibits a very high de-

pendence on 1/ǫ.

So far, all the related work discussed above assume the

one-bit measure to be perfect (i.e., yi = sign(x⊤
∗ ui)).

Although several heuristic algorithms (Yan et al., 2012;

Movahed et al., 2012; Jacques et al., 2013) were pro-

posed to handle noise in one-bit measure, none of them

has theoretical guarantees. The only provable recov-

ery algorithm for robust compressive sensing is given

in (Plan & Vershynin, 2013b), where the sparse vector is

recovered by solving the following convex optimization

problem

max
x

x⊤Uy s. t. ‖x‖2 ≤ 1, ‖x‖1 ≤ √
s K
0 0 0 17(o96264 Tf
36.0361 -28.665 Td
[(m)0671(a)0.444042(p)0.43cm )0.-0.238195(t)-0.2479(n)40.16379(r)-0.344059(r)-0.345529(e)782(-)-0.34722(g)-445.853(t)-0.241135i fin
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Table 1. Sample Complexities of existing algorithms for one-bit compressive sensing.

x∗ IS EXACTLY SPARSE x∗ IS APPROXIMATELY SPARSE

SAMPLE COMPLEXITY REFERENCE SAMPLE COMPLEXITY REFERENCE

NOISELESS
O
(

s logn

ǫ

) (JACQUES ET AL., 2013)

O
(

s log2 n

ǫ5

)

(PLAN & VERSHYNIN, 2013A)(GOPI ET AL., 2013)

O
(

s log2 n

ǫ5

)

(PLAN & VERSHYNIN, 2013A)

NOISY

O
(

s logn

ǫ4

)

(PLAN & VERSHYNIN, 2013B)
O
(

s logn

ǫ4

) (PLAN & VERSHYNIN, 2013B)

O
(

s logn

ǫ2

)

(OUR PASSIVE ALGORITHM) (OUR PASSIVE ALGORITHM)

O
(

min

(

s logn

ǫ2
,
s
√
n logn

ǫ

))

(OUR ADAPTIVE ALGORITHM)O
(

min

(

s logn

ǫ4
,
s
√
n logn

ǫ3

))

(OUR ADAPTIVE ALGORITHM)

independently at random satisfying

E[yi|ui] = θ(x⊤
∗ ui), i = 1, . . . , m (4)

where θ(z) : R 7→ [−1,+1] is some nonlinear function that

can be unknown. In order to capture the relation between

ui and yi, following (Plan & Vershynin, 2013b), we define

λ for θ(z) as follows,

λ := Eg∼N (0,1)[θ(g)g] (5)

where λ measures how well yi is correlated with x⊤
∗ ui. We

assume λ > 0, implying that a positive correlation between

the real-valued measurement and the binary output from

θ(·).
Since we only receive the sign information about the ran-

dom measurements, it is impossible to recover the scale of

x∗. As a result, we will only consider the recovery of the

direction of x∗, and therefore assume ‖x∗‖2 = 1.

3.2. Passive Algorithm for 1-bit CS

The proposed algorithm is inspired by the convex formula-

tion in (3). Instead of having a constraint ‖x‖1 ≤ √
s to

ensure a sparse solution, we introduce a ℓ1 regularizer in

the objective function, leading to the following optimiza-

tion problem

min
‖x‖2≤1

− 1

m
x⊤Uy + γ‖x‖1 (6)

where γ > 0 is a regularization parameter, whose value

will be discussed later. As shown below, the problem in (6)

has a closed-form solution.

Define the soft-thresholding operator (Donoho, 1995;

Duchi & Singer, 2009) as

Pγ(α) =

{
0, if |α| ≤ γ;
sign(α)(|α| − γ), otherwise.

(7)

We extend the operator Pγ(·) to vectors as

Pγ([α1, . . . , αm]⊤) = [Pγ(α1), . . . , Pγ(αm)]⊤.

Lemma 1. Let x̂ be the optimal solution of (6). Then, we

have

x̂ =

{
0, if

∥∥ 1
mUy

∥∥
∞ ≤ γ;

1

‖Pγ( 1

m
Uy)‖

2

Pγ
(

1
mUy

)
, otherwise.

The proof can be found in the supplementary material.

The following theorem provides the recovery rate for the

optimal solution to (6).

Theorem 1. Assume

γ = 2c

√
t + log n

m
(8)

for some constant c. If x∗ is exactly sparse, i.e., ‖x∗‖0 ≤ s,

with a probability at least 1− e1−t, we have

‖x̂− x∗‖2 ≤ 3γ

λ

√
‖x∗‖0 = O

(√
s log n

m

)
.

If x∗ is approximately sparse, i.e., ‖x‖1 ≤ √
s, with a prob-

ability at least 1− e1−t, we have

‖x̂− x∗‖2 ≤
√

3γ

λ
‖x∗‖1 = O

(
4

√
s log n

m

)
.

Remark Compared to the result in (Plan & Vershynin,

2013b), the proposed algorithm improves the sample com-

plexity from O(s log n/ǫ4) to O(s log n/ǫ2) when recov-

ering an exactly s-sparse vector from noisy one-bit mea-

surements. In addition, the sample complexity of the pro-

posed algorithm for one-bit compressive sensing match-

es the minimax rate of conventional compressive sens-

ing (Raskutti et al., 2011) for both exactly sparse and ap-

proximately sparse vectors. We however emphasize that
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Algorithm 1 An adaptive algorithm for One-bit Compres-

sive Sensing

1: Input: the number of stages K, the initial sample

size m1, the initial regularizer γ1, the step size η ∈
{21/2, 21/4}

2: Let x1 be any unit vector, δ1 = 1
3: for k = 1 to K do

4: Randomly sample mk Gaussian random vectors

Gk = {uk1 , . . . ,ukmk
}.

5: Divide Gk into Ak and Bk according to (11)

6: For uki ∈ Ak, generate the one-bit measurement yki
from sign(x⊤

k u
k
i )

7: For uki ∈ Bk, query the Oracle to obtain the one-bit

measurement yki
8:

xk+1 = argmin
‖x‖2≤1

− 1

mk

mk∑

i=1

yki x
⊤uki + γk‖x‖1

9: mk+1 = 2mk, γk+1 = γk/
√
2, δk+1 = δk/η

10: end for

11: Output: the final solution xK+1

the guarantee for conventional compressive sensing algo-

rithm does not directly apply to one-bit compressive sens-

ing because E[yi] is not proportional to x⊤
∗ ui. We also note

that this sample complexity is better than O(n/ǫ2), which

is the optimal rate for binary classification in the noisy set-

ting (Anthony & Bartlett, 1999, Theorem 5.2).

3.3. An Adaptive Algorithm for 1-bit CS

The proposed algorithm aims to explore the idea of active

learning (Dasgupta, 2011) to reduce the number of one-

bit measurements. The key observation is that after ob-

serving certain number of one-bit measurements, we can

obtain an intermediate solution x̂ that is reasonably close

to the direction of the target vector. As a result, for the

sequentially sampled random vector u, we would expec-

t sign(x̂⊤u) = sign(x⊤
∗ u) if the direction of u is close

to that of x̂ (or −x̂) and therefore do not need to ask for

an one-bit measurement for u. However, it is problematic

to directly replace y, the one-bit measurement for u, with

sign(x̂⊤u) since y is perturbed by random noise. A similar

issue was also raised in (Yang & Hanneke, 2013), where

the authors propose to re-noise the data to ensure all the

measurements follow the same distribution. In this paper,

for the sake of simplicity, we make the following assump-

tion:

A1: We assume that for a vector u, if the value of

sign(x⊤
∗ u) is provided, we can generate the one-bit mea-

surement y without querying the Oracle.

One possible noise model is

y = ξsign(x⊤
∗ u), (9)

where ξ is a independent {−1, 1} valued random variable

with Pr(ξ = −1) = p, representing random bit flip-

s (Plan & Vershynin, 2013b). It is straightforward to gen-

erate the one-bit measurement y if both sign(x⊤
∗ u) and p

are provided.

The complete procedure is provided in Algorithm 1. Our

algorithm is closely related to the epoch gradient algorith-

m developed for stochastic optimization (Hazan & Kale,

2011). It divides the recovery process into K stages. At

each stage k > 1, we assume that an approximate solution

xk is obtained from the previous stage with

‖xk‖2 = 1, and ‖xk − x∗‖2 ≤ δk. (10)

Let Gk = {uk1 , . . . ,ukmk
} be a set of mk vectors that are

independently sampled from Gaussian distribution. We di-

vide the set Gk into two subsets:

Ak =

{
uki :

∣∣∣∣x
⊤
k

uki

‖uki ‖2

∣∣∣∣ > δk

}
,

Bk =

{
uki :

∣∣∣∣x
⊤
k

uki

‖uki ‖2

∣∣∣∣ ≤ δk

}
.

(11)

where Ak includes random vectors whose directions are

close to xk or −xk while Bk includes those that are far

away from xk and −xk. The following Lemma reveals an

important property of Ak

Lemma 2. Under the condition in (10), we have

sign(x⊤
∗ u) = sign(x⊤

k u), ∀u ∈ Ak.

Since for any u ∈ Ak, sign(x⊤
∗ u) can be inferred from

sign(x⊤
k u), we can skip one-bit measurement for any u ∈

Ak and reduce the number of one-bit measurements.

We now discuss the recover property of Algorithm 1. For

the case that x∗ is exactly sparse, we have the following

theorem for the adaptive algorithm.

Theorem 2. Suppose x∗ is exactly sparse, i.e., ‖x∗‖0 ≤ s,

and assumption A1 holds. Let

m1 =
72c2s(t + log n)

λ2
, γ1 =

λ

3
√
2s

, η = 21/2

where c is the constant in Theorem 1. Then, with a proba-

bility at least 1− Ke1−t, we have

‖xK+1 − x̂‖2 ≤ δK+1 =
1

2K/2
.

Furthermore, with a probability at least 1 − (e + 1)(K −
1)e−t, the number of calls to the Oracle

∑K
k=1 |Bk| is

bounded by

min
(
2(K − 1)t + (5

√
n2K/2 + 1)m1, m12

K
)

.
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The above theorem immediately implies the following

corollary.

Corollary 1. Under the condition in Theorem 2, the recov-

ery rate of the adaptive algorithm is

O

(
min

(√
s log n

m
,

s
√

n log n

m

))
,

where m =
∑K
k=1 |Bk| is the total number of measure-

ments. And thus the sample complexity is

O

(
min

(
s log n

ǫ2
,

s
√

n log n

ǫ

))
.

Remark As a result, the sample complexity of the adap-

tive algorithm is smaller than that of the pass11.9511233(36 57142(e)-246.188(a)0.442742(l)-0.239665(l)-.43522ge)-346.449(m)0.19408rnhe 128 23d
[(A)0.20364,5(n)0.23d1 9.9-23d
[(A)Td
[(e)0.44257w(s)-347.264(e)0.443307(r)36.7018n(e)0.44339.96264 Tf
27.8189 0 0.238
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Thus,

λ(1− x̂⊤x∗) +
γ

2
‖PS(x̂)‖1

≤γ‖x∗‖1 − γ‖PS(x̂)‖1 +
γ

2
‖PS(x∗ − x̂)‖1

≤3γ

2
‖PS(x∗ − x̂)‖1 ≤ 3γ

2

√
‖x∗‖0‖PS(x∗ − x̂)‖2.

Then, we have

‖x∗ − x̂‖22 ≤ 2(1− x̂⊤x∗) ≤
3γ

λ

√
‖x∗‖0‖x∗ − x̂‖2

which implies

‖x∗ − x̂‖2 ≤ 3γ

λ

√
‖x∗‖0.

Next, we consider the case that x∗ is approximately sparse,

i.e., ‖x∗‖1 ≤ √
s. From (12), we have

λ(1− x̂⊤x∗)

≤γ‖x∗‖1 − γ‖x̂‖1 +
γ

2
‖x∗‖1 +

γ

2
‖x̂‖1 ≤ 3γ

2
‖x∗‖1.

Thus,

‖x∗ − x̂‖22 ≤ 2(1− x̂⊤x∗) ≤
3γ

λ
‖x∗‖1.

4.2. Proof of Theorem 2

From the updating rule in our algorithm, it is easy to check

that

δk =
1

2(k−1)/2
, γk = 2c

√
t + log n

mk
, ∀k.

So, the condition (8) in Theorem 1 is satisfied at each state.

We first consider the first stage. Since ‖x1‖ = 1 and

δ1 = 1, the definitions in (11) ensures B1 = G1. And

thus we will query the Oracle to obtain the one-bit measure-

ments for all the elements in G1. As a result, we can apply

Theorem 1 to bound the recovery error of x2. Specifically,

with a probability at least 1− e1−t, we have

‖x2 − x̂‖2 ≤ 3γ1

λ

√
s =

1√
2
= δ2.

Thus, the condition in (10) is true for k = 2. Based on

Lemma 2, we can apply Theorem 1 again and get

‖x3 − x̂‖2 ≤ 3γ2

λ

√
s =

3γ1

λ

√
s

1√
2
=

δ2√
2
= δ3.

Repeating the above argument for all the stages, we obtain

the first part of the theorem.

Now, we consider bounding the size of Bk. Since B1 = G1,

we have

|B1| = m1.

For k = 2, we have with a probability at least 1−e1−t, (10)

holds. We condition on the event that (10) is true, and pro-

ceed by analyzing the distribution of x⊤
2 u

2
i /‖u2

i ‖2 appears

in the definition of B2. Since u2
i is a Gaussian random vec-

tor, it is known that u2
i /‖u2

i ‖2 is uniformly distributed on

the n−
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4.3. Proof of Lemma 3

We need the following lemma on the expectation of uiyi.

Lemma 4.

E [uiyi] = λx∗, i = 1, . . . n.

Consider the j-th element of 1
mUy − λx∗, that is,

[
1

m
Uy − λx∗

]

j

=
1

m

m∑

i=1

ujiyi − λxj∗,

where uji and xj∗ are the j-th element of ui and x∗, respec-

tively.

Lemma 4 implies E[ujiyi] = λxj∗. From (Vershynin, 2012,

Remark 5.18), we have
∥∥∥ujiyi − λxj∗

∥∥∥
ψ2

≤ 2
∥∥∥ujiyi

∥∥∥
ψ2

(13)

where

‖X‖ψ2
= sup

p≥1
p−1/2(E|X|p)1/p

is the sub-gaussian norm of random variable X (Vershynin,

2012, Definition 5.7). Since yi ∈ {±1}, we have
∥∥∥ujiyi

∥∥∥
ψ2

=
∥∥∥uji

∥∥∥
ψ2

≤ c (14)

where c > 0 is an absolute constant, and the last inequality

follows from uji ∼ N (0, 1) and (Vershynin, 2012, Example

5.8).

We will use the Hoeffding-type inequality for sub-gaussian

random variables given below.

Lemma 5. (Vershynin, 2012, Proposition 5.10) Let

X1, . . . , XN be independent centered sub-gaussian ran-

dom variables, and let K = maxi ‖Xi‖ψ2
. Then, for any

α = [α1, . . . , αN ]⊤ ∈ R
N and every t ≥ 0, we have

Pr

(∣∣∣∣∣

N∑

i=1

αiXi

∣∣∣∣∣ ≥ t

)
≤ exp

(
1− ct2

K2|α|22

)

where c > 0 is an absolute constant.

Combining Lemma 5 with (13) and (14), we have with a

probability at least 1− e1−t,
∣∣∣∣∣
1

m

m∑

i=1

ujiyi − λxj∗

∣∣∣∣∣ ≤ c

√
t

m

for some constant c > 0. We complete the proof by taking

the union bound over j = 1, . . . , n.

5. Experiments

In this section, we perform the recovery experiment to veri-

fy our theoretical claims. Due to space limitations, we only

provide results for the exactly sparse vectors.

Table 2. Running time of each algorithm, when s=10, n = 1000,

and m = 1000. For BIHT and BIHT-ℓ2, there is no formal stop-

ing criterion, and we report the running time after 100 iterations.

PASSIVE BIHT BIHT-ℓ2 CONVEX

TIME (S) 1.1e−3 1.7 1.7 0.72

Experimental Setup We generate the target vector x∗ ∈
R
n by drawing its nonzero elements from the standard

Gaussian distribution, and then normalize it to have unit

length. The locations of the s nonzero elements of x∗
are randomly selected. The elements in the matrix matrix

U ∈ R
n×m are also drawn from the standard Gaussian dis-

tribution. To generate noisy measurements, we choose the

observation model in (9), where the sign of u⊤
i x∗ is flipped

with probability p

http://perso.uclouvain.be/laurent.jacques/index.php/Main/BIHTDemo
http://perso.uclouvain.be/laurent.jacques/index.php/Main/BIHTDemo
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