Supplementary Material: A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data

Jinfeng Yi	JINFENGY@US.IBM.COM
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA	
Lijun Zhang	ZHANGLJ@LAMDA.NJU.EDU.CN
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China	
Jun Wang	WANGJUN@US.IBM.COM
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA	
Rong Jin	RONGJIN@CSE.MSU.EDU
Anil K. Jain	JAIN@CSE.MSU.EDU
Department of Computer Science and Engineering, Michigan State University, East Lensing, MI 40024 USA	

Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 USA

Theorem 1. Let 1=(6m) be a parameter to control the success probability. Assume

$$\frac{1}{2^{p}} \frac{1}{2s} = c \frac{1}{2^{p}} \frac{1}{2s}; \qquad (2)$$

$$T \quad \max\left(\frac{18}{0}\ln\frac{2K}{2}; \frac{3c_{2}}{1}; \left(\frac{6c_{3}}{1}\right)^{2} (\ln n + \ln d)\right)$$
(3)

where C, C_2 and C_3 are some universal constants. Then, with a probability at least 1 6m, we have

$$^{m+1} = \max_{1 \le i \le K} k \widehat{\mathbf{c}}_i^{m+1} \quad \mathbf{c}_i k \quad \max\left(* : \stackrel{\mathcal{C}}{\not \to} \frac{1}{\overline{2^m}} \right) :$$

Corollary 1. The convergence rate for , the maximum difference between the optimal cluster centers and the estimated ones, is $O(\sqrt{(s \log d) = n})$ before reaching the optimal difference *.

1. Proof of Corollary 1

According to the assumption of 1 in (2), we know that $\frac{1}{\lambda^1} \neq \frac{\sqrt{s}}{1}$. Since the value of T is dominated by the last term in the right side of (3), we have $T \neq \frac{s \log d}{1, -1}$, which implies

$$n \neq 2^m T \neq 2^m \frac{s \log d}{1}$$
:

Combining with the conclusion $m+1 \neq \frac{1}{\sqrt{2m}}$, we have

$$_{m+1} \neq \sqrt{\frac{s\log d}{n}}$$
:

Lemma 1. Let t be the maximum difference between the optimal cluster centers and the ones estimated from iteration *t*, and 2(0,1) be the failure probability. Assume

$$t = \frac{1}{2} \sqrt{5 \ln (3K)}$$
, max; (4)

$$jS^t j = \frac{18}{9} \ln \frac{2K}{2}; \tag{5}$$

$${}^{t} \quad c_{1} \exp\left(-\frac{(1-2-t-)^{2}}{8(1+-t)^{2-2}}\right) \left(_{0} + \sqrt{\ln jS^{t}}j\right) + \frac{c_{2-0}}{jS^{t}j} + c_{3} - \frac{\sqrt{\ln jS^{t}}j}{\sqrt{jS^{t}}j} + \frac{\rho}{\ln d};$$
(6)

for some constants C_1 , C_2 and C_3 . Then with a probability 1 6, we have

$$t+1 \quad 2^{p} \bar{s} t$$
:

2. Proof of Lemma 1

For the simplicity of analysis, we will drop the superscript *t* through this analysis.

2.1. Preliminaries

We denote by C_k the support of \mathbf{c}_k and $\overline{C}_k = [d] \cap C_k$. For any vector \mathbf{z} , $\mathbf{z}(C)$ is defined as $[\mathbf{z}(C)]_i = z_i$ if $i \ge C$ and zero, otherwise.

For any $\mathbf{x}_i \ 2 \ S_i$, we use k_i to denote the index of the true cluster, and \hat{k}_i to denote index of the cluster assigned by the nearest neighbor search, i.e.,

$$\mathbf{x}_{i} = \mathbf{c}_{k_{i}} + \mathbf{g}_{i} \text{ and } \mathbf{g}_{i} \qquad \mathcal{N}(0; {}^{2}I);$$
$$\hat{k}_{i} = \underset{j \in [K]}{\arg \max} \widehat{\mathbf{c}}_{j}^{\top} \mathbf{x}_{i}:$$

Then, we can partition data points in *S* based on either the ground truth or the assigned cluster. Let S_k be the subset of data points in *S* that belong to the *k*-th cluster, i.e.,

$$S_k = f \mathbf{x}_i \ 2 \ S : \mathbf{x}_i = \mathbf{c}_k + \mathbf{g}_i \text{ and } \mathbf{g}_i \qquad N(0; \ ^2I)g$$
(7)

Let \widehat{S}_k be the subset of data points that are assigned to the k-th cluster based on the nearest neighbor search, i.e.,

$$\widehat{S}_k = f \mathbf{x}_i \ 2 \ S : k = \arg\max_{j \in [K]} \widehat{\mathbf{c}}_j^\top \mathbf{x}_i g$$
(8)

2.2. The Main Analysis

Let $L_k(\mathbf{c})$ be the objective function in Step 11 of Algorithm 1. We expand $L_k(\mathbf{c})$ as

$$\mathcal{L}_{k}(\mathbf{c}) = k\mathbf{c}k_{1} + k\mathbf{c} \quad \mathbf{c}_{k}k^{2} + \frac{1}{j\widehat{S}_{k}j}\sum_{\mathbf{x}_{i}\in\widehat{S}_{k}}k\mathbf{x}_{i} \quad \mathbf{c}_{k}k^{2} \quad \frac{2}{j\widehat{S}_{k}j}\sum_{\mathbf{x}_{i}\in\widehat{S}_{k}}(\mathbf{c} \quad \mathbf{c}_{k})^{\top}(\mathbf{x}_{i} \quad \mathbf{c}_{k})$$

$$= k\mathbf{c}k_{1} + k\mathbf{c} \quad \mathbf{c}_{k}k^{2} + \frac{1}{j\widehat{S}_{k}j}\sum_{\mathbf{x}_{i}\in\widehat{S}_{k}}k\mathbf{x}_{i} \quad \mathbf{c}_{k}k^{2}$$

$$2(\mathbf{c} \quad \mathbf{c}_{k})^{\top}\underbrace{\frac{1}{j\widehat{S}_{k}j}\sum_{\mathbf{x}_{i}\in\widehat{S}_{k}\setminus S_{k}}(\mathbf{c}_{k_{i}} \quad \mathbf{c}_{k})}_{A_{k}} \quad 2(\mathbf{c} \quad \mathbf{c}_{k})^{\top}\underbrace{\frac{1}{j\widehat{S}_{k}j}\sum_{\mathbf{x}_{i}\in\widehat{S}_{k}}\mathbf{g}_{i}}_{B_{k}}$$

$$(9)$$

Let \mathbf{c}_k^* be the optimal solution that minimizes $\mathcal{L}_k(\mathbf{c})$, and define $\mathbf{f}_k = \mathbf{c}_k^* - \mathbf{c}_k$. We have

$$L_{k}(\mathbf{c}_{k}^{*}) \quad L_{k}(\mathbf{c}_{k})$$

$$= k\mathbf{f}_{k} + \mathbf{c}_{k}k_{1} + k\mathbf{f}_{k}k^{2} \quad 2\mathbf{f}_{k}^{\top}A_{k} \quad 2\mathbf{f}_{k}^{\top}B_{k} \quad k\mathbf{c}_{k}k_{1}$$

$$k\mathbf{c}_{k}k_{1} \quad k\mathbf{f}_{k}(C_{k})k_{1} + k\mathbf{f}_{k}(\overline{C}_{k})k_{1} + k\mathbf{f}_{k}k^{2} \quad 2\mathbf{f}_{k}^{\top}A_{k} \quad 2\mathbf{f}_{k}^{\top}B_{k} \quad k\mathbf{c}_{k}k_{1}$$

$$k\mathbf{f}_{k}(C_{k})k_{1} + k\mathbf{f}_{k}(\overline{C}_{k})k_{1} + k\mathbf{f}_{k}k^{2} \quad 2k\mathbf{f}_{k}k_{1}kA_{k}k_{\infty} \quad 2k\mathbf{f}_{k}k_{1}kB_{k}k_{\infty}$$

$$= (+2kA_{k}k_{\infty} + 2kB_{k}k_{\infty})k\mathbf{f}_{k}(C_{k})k_{1} + (-2kA_{k}k_{\infty} \quad 2kB_{k}k_{\infty})k\mathbf{f}_{k}(\overline{C}_{k})k_{1} + k\mathbf{f}_{k}k^{2}$$

$$\sqrt{jC_{k}j}(+2kA_{k}k_{\infty} + 2kB_{k}k_{\infty})k\mathbf{f}_{k}(C_{k})k + (-2kA_{k}k_{\infty} \quad 2kB_{k}k_{\infty})k\mathbf{f}_{k}(\overline{C}_{k})k_{1} + k\mathbf{f}_{k}k^{2}:$$

Thus, if

$$2kA_kk_{\infty} + 2kB_kk_{\infty}$$
;

we have

$$k\mathbf{f}_{k}(C_{k})k^{2} \quad k\mathbf{f}_{k}k^{2} \quad (+2k\mathbf{A}_{k}k_{\infty}+2k\mathbf{B}_{k}k_{\infty})\sqrt{jC_{k}}jk\mathbf{f}_{k}(C_{k})k \quad 2\sqrt{jC_{k}}jk\mathbf{f}_{k}(C_{k})k \quad) \quad k\mathbf{f}_{k}(C_{k})k \quad 2\sqrt{jC_{k}}jk\mathbf{f}_{k}(C_{k})k \quad) \quad k\mathbf{f}_{k}(C_{k})k \quad 2\sqrt{jC_{k}}jk\mathbf{f}_{k}(C_{k})k \quad) \quad k\mathbf{f}_{k}(C_{k})k \quad) \quad k\mathbf{f}_{k}(C_{k})k$$

and thus

$$k\mathbf{f}_k k^2 = 2 \sqrt{jC_k j} k\mathbf{f}_k(C_k) k = 4^{-2} jC_k j$$
 $k\mathbf{f}_k k = 2 \sqrt{jC_k j}$

In summary, if

 $2kA_kk_{\infty} + 2kB_kk_{\infty}; 8k \ 2[K]$

we have

$$\max_{1 \le k \le K} k \mathbf{c}_k^* \mathbf{c}_k k 2^{D_{\overline{s}}}:$$

In the following, we discuss how to bound kA_kk_{∞} and kB_kk_{∞} .

2.3. Bound for kA_kk_{∞}

From the definition of A_k in (9), we have

$$kA_kk_\infty$$
 2 $_0\frac{j\widehat{S}_k \ n \ S_kj}{j\widehat{S}_kj}$:

2.3.1. Lower bound of $j\widehat{S}_k j$

First, we show that the size of S_k is lower-bounded, which means a significant amount of data points in *S* belong to the *k*-th cluster. Recall that $_{1}$;:::; $_{K}$ are the weight of the Gaussian mixtures, and $_{0} = \min_{\substack{1 \le i \le K \\ 1 \le i \le K}} i$. According to the Chernoff bound (Angluin & Valiant, 1979) provided in Appendix A, we have, with a probability at least 1

$$jS_k j = {}_k jSj \left(1 = \sqrt{\frac{2}{{}_k jSj}} \ln \frac{K}{2} \right)^{(5)} \frac{2}{3} {}_k jSj; 8k \ 2[K]:$$
 (10)

Next, we prove that a larger amount of data points in S_k belong to \hat{S}_k . We begin by analyzing the probability that the assigned cluster \hat{k}_i of \mathbf{x}_i is the true cluster k_i . The similarity between \mathbf{x}_i and the estimated cluster centers can be bounded by

$$\widehat{\mathbf{c}}_{k_i}^{\top} \mathbf{x}_i = \widehat{\mathbf{c}}_{k_i}^{\top} (\mathbf{c}_{k_i} + \mathbf{g}_i) = k \mathbf{c}_{k_i} k^2 + [\widehat{\mathbf{c}}_{k_i} - \mathbf{c}_{k_i}]^{\top} \mathbf{c}_{k_i} + \widehat{\mathbf{c}}_{k_i}^{\top} \mathbf{g}_i$$

$$1 \quad k \widehat{\mathbf{c}}_{k_i} - \mathbf{c}_{k_i} k \quad j \widehat{\mathbf{c}}_{k_i}^{\top} \mathbf{g}_i j = 1 \quad (1 + \cdot) \left| \mathbf{g}_i^{\top} \frac{\widehat{\mathbf{c}}_{k_i}}{k \widehat{\mathbf{c}}_{k_i} k} \right| ;$$

$$\widehat{\mathbf{c}}_j^{\top} \mathbf{x}_i = \widehat{\mathbf{c}}_j^{\top} (\mathbf{c}_{k_i} + \mathbf{g}_i) = \mathbf{c}_j^{\top} \mathbf{c}_{k_i} + [\widehat{\mathbf{c}}_j - \mathbf{c}_j]^{\top} \mathbf{c}_{k_i} + \widehat{\mathbf{c}}_j^{\top} \mathbf{g}_i$$

$$+ k \widehat{\mathbf{c}}_j - \mathbf{c}_j k + j \widehat{\mathbf{c}}_j^{\top} \mathbf{g}_i j + (1 + \cdot) \left| \mathbf{g}_i^{\top} \frac{\widehat{\mathbf{c}}_j}{k \widehat{\mathbf{c}}_j k} \right| ; j \notin k_i ;$$

Hence, \mathbf{x}_i will be assigned to cluster k_i if

$$(1 +) \left| \mathbf{g}_i^\top \frac{\widehat{\mathbf{c}}_{k_i}}{k \widehat{\mathbf{c}}_{k_i} k} \right| + (1 +) \left| \mathbf{g}_i^\top \frac{\widehat{\mathbf{c}}_j}{k \widehat{\mathbf{c}}_j k} \right| ; \ \delta j \ \epsilon \ k_i,$$

which leads to the following sufficient condition

1

$$\max_{1 \le j \le K} \left| \mathbf{g}_i^\top \frac{\hat{\mathbf{c}}_j}{k \hat{\mathbf{c}}_j k} \right| = \frac{1}{2(1+1)} g_0^{(4)} \frac{2}{3} \frac{\sqrt{5 \ln(3K)}}{3} = \sqrt{2 \ln(3K)}.$$
(11)

It is easy to verify that for any fixed direction \hat{c} with $k\hat{c}k = 1$, $\mathbf{g}_i^{\top}\mathbf{c}$ is a Gaussian random variable with mean 0 and variance ². Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B, we have

$$\Pr\left[\max_{1 \le j \le K} \left| \mathbf{g}_i^\top \frac{\widehat{\mathbf{c}}_j}{k \widehat{\mathbf{c}}_j k} \right| \quad g_0 \right] \quad 1 \quad \mathcal{K} \exp\left(-\frac{g_0^2}{2^{-2}}\right):$$
$$= \mathcal{K} \exp\left(-\frac{g_0^2}{2^{-2}}\right)^{(11)} \frac{1}{3}: \tag{12}$$

Define

In summary, we have proved the following lemma.

Lemma 2. Under the condition in (4), with a probability at least 1 , $\mathbf{x}_i = \mathbf{c}_{k_i} + \mathbf{g}_i \ 2 \ S_{k_i}$ S satisfies

$$\max_{1 \le j \le K} \left| \mathbf{g}_i^\top \frac{\widehat{\mathbf{c}}_j}{k \widehat{\mathbf{c}}_j k} \right| \quad g_0;$$

and is assigned to the correct cluster k_i based on the nearest neighbor search (i.e., $\hat{k}_i = k_i$).

Define

$$S_k^1 = \left\{ \mathbf{x}_i \ 2 \ S_k : \max_{1 \le j \le K} \left| \mathbf{g}_i^\top \frac{\widehat{\mathbf{c}}_j}{k\widehat{\mathbf{c}}_j k} \right| \quad g_0 \right\} \quad \widehat{S}_k \setminus S_k:$$
(13)

Since each data point in S_k has a probability at least 1 to be assigned to set S_k^1 , using the Chernoff bound again, we have, with a probability at least 1 ,

$$j\widehat{S}_{k}j \quad j\widehat{S}_{k} \wedge S_{k}j \quad jS_{k}^{1}j \quad \mathsf{E}\left[jS_{k}^{1}j\right] \left(1 \quad \sqrt{\frac{2}{\mathsf{E}\left[jS_{k}^{1}j\right]} \ln \frac{K}{-1}}\right)$$

$$(1 \quad)jS_{k}j \left(1 \quad \sqrt{\frac{2}{(1 \quad)jS_{k}j} \ln \frac{K}{-1}}\right)$$

$$^{(12)} \quad \frac{2}{3}jS_{k}j \left(1 \quad \sqrt{\frac{3}{jS_{k}j} \ln \frac{K}{-1}}\right)^{(5), (10)} \frac{1}{3}jS_{k}j; 8k \ 2[K]:$$

$$(14)$$

2.3.2. Upper bound of $j\widehat{S}_k \cap S_k j$

Define

$$O = \begin{bmatrix} K \\ k=1 \end{bmatrix} S_k^1 \quad S \text{ and } \overline{O} = \begin{bmatrix} K \\ k=1 \end{bmatrix} \left(\widehat{S}_k \ n \ S_k^1 \right) = S \ n \ O \quad S:$$

From Lemma 2, we know that with a probability at least 1 , each $\mathbf{x}_i \ 2 \ S_k$ belongs to the set $S_k^1 \ O$. Thus, with probability at least 1 , each $\mathbf{x}_i \ 2 \ S$ belongs to O. In other words, with probability *at most* , each $\mathbf{x}_i \ 2 \ S$ belongs to \overline{O} . Based on the Chernoff bound, we have, with a probability at least 1 ,

$$j\overline{O}j = 2E[j\overline{O}j] + 2\ln\frac{1}{2} = 2jSj + 2\ln\frac{1}{2}$$
 (15)

Since $S_k^1 = S_k$, we have $\hat{S}_k \cap S_k = \hat{S}_k \cap S_k^1 = \overline{O}$. Therefore, with a probability at least 1 , we have

$$j\widehat{S}_k n S_k j = 2 \ jSj + 2 \ln \frac{1}{j}; 8k \ 2 \ [K];$$
 (16)

Combining (10), (14) and (16), we have, with probability at least 1 3

$$kA_{k}k_{\infty} = 2 \left[\frac{2 jSj + 2\ln\frac{1}{\epsilon}}{\frac{2}{9} kjSj} \right] = \frac{18 0}{k} \left(+ \frac{1}{jSj}\ln\frac{1}{\epsilon} \right) = O(-0) + O\left(\frac{0}{jSj}\right); 8k \ 2[K]:$$
(17)

2.4. Bound for $kB_k k_{\infty}$

Notice that $f\mathbf{g}_i : \mathbf{x}_i \ge \widehat{S}_k g$, determined by the estimated centers $\widehat{\mathbf{c}}_1 : \ldots : \widehat{\mathbf{c}}_K$, is a specific subset of $f\mathbf{g}_i : \mathbf{x}_i \ge Sg$. Although \mathbf{g}_i is drawn from the Gaussian distribution $N(0; {}^2I)$, the distribution of elements in $f\mathbf{g}_i : \mathbf{x}_i \ge \widehat{S}_k g$ is unknown. As a result, we cannot direct apply concentration inequality of Gaussian random vectors to bound $kB_k k_\infty$. Let $U_1 \ge \mathbb{R}^{d \times K}$ be a matrix whose columns are basis vectors of the subspace spanned by $\widehat{\mathbf{c}}_1 : \ldots : \widehat{\mathbf{c}}_K$, and $U_2 \ge \mathbb{R}^{d \times (d-K)}$ be a matrix whose columns are basis vectors of the complementary subspace. We then divide each \mathbf{g}_i as

$$\mathbf{g}_i = \mathbf{g}_i^{\parallel} + \mathbf{g}_i^{\perp};$$

where $\mathbf{g}_i^{\parallel} = U_1 U_1^{\top} \mathbf{g}_i$, and $\mathbf{g}_i^{\perp} = U_2 U_2^{\top} \mathbf{g}_i$.

First, we upper bound kB_kk_∞ as

$$kB_{k}k_{\infty} \qquad \underbrace{\left\|\frac{1}{j\widehat{S}_{k}j}\sum_{\mathbf{x}_{i}\in\widehat{S}_{k}}\mathbf{g}_{i}^{\perp}\right\|_{\infty}}_{\widehat{B}_{k}^{1}} + \underbrace{\frac{j\widehat{S}_{k}nS_{k}^{1}j}{j\widehat{S}_{k}j}\left\|\frac{1}{j\widehat{S}_{k}nS_{k}^{1}j}\sum_{\mathbf{x}_{i}\in\widehat{S}_{k}\setminus S_{k}^{1}}\mathbf{g}_{i}^{\parallel}\right\|_{\infty}}_{\widehat{B}_{k}^{2}} + \underbrace{\frac{jS_{k}^{1}j}{j\widehat{S}_{k}j}\left\|\frac{1}{jS_{k}^{1}j}\sum_{\mathbf{x}_{i}\in\mathcal{S}_{k}^{1}}\mathbf{g}_{i}^{\parallel}\right\|_{\infty}}_{\widehat{B}_{k}^{3}} : \qquad (18)$$

In the following, we discuss how to bound each term in the right hand side of (18).

2.4.1. Upper bound of \hat{B}_k^1

Following the property of Gaussian random vector, $\sum_{\mathbf{x}_i \in \widehat{S}_k} U_2^{\mathsf{T}} \mathbf{g}_i = \left(\sqrt{j\widehat{S}_k j}\right)$ can be treated as a $(d \ \mathcal{K})$ -dimensional Gaussian random vector. As a result, each element of $U_2 \sum_{\mathbf{x}_i \in \widehat{S}_k} U_2^{\mathsf{T}} \mathbf{g}_i = \left(\sqrt{j\widehat{S}_k j}\right)$ is a Gaussian random variable with variance smaller than 1. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B and the union bound, with a probability at least 1 , we have

$$\left\|\sum_{\mathbf{x}_i\in\widehat{S}_k}\mathbf{g}_i^{\perp}=\left(\sqrt{j\widehat{S}_kj}\right)\right\|_{\infty}=\left\|U_2\sum_{\mathbf{x}_i\in\widehat{S}_k}U_2^{\top}\mathbf{g}_i=\left(\sqrt{j\widehat{S}_kj}\right)\right\|_{\infty}-\sqrt{2\ln\frac{Kd}{m}};8k\ 2\left[K\right];$$

which implies

$$\widehat{B}_{k}^{1} = \sqrt{\frac{2\ln\frac{Kd}{\epsilon}}{j\widehat{S}_{k}j}} \quad (10), (14) \quad \sqrt{\frac{2\ln\frac{Kd}{\epsilon}}{2 \ k}} = O\left(\sqrt{\frac{\ln d}{jSj}}\right); 8k \ 2 \ [K]:$$
(19)

2.4.2. Upper bound of \hat{B}_k^2

First, we have

$$\left\|\frac{1}{j\widehat{S}_k n S_k^1 j} \sum_{\mathbf{x}_i \in \widehat{S}_k \setminus S_k^1} \mathbf{g}_i^{\parallel}\right\|_{\infty} = \left\|\frac{1}{j\widehat{S}_k n S_k^1 j} \sum_{\mathbf{x}_i \in \widehat{S}_k \setminus S_k^1} U_1 U_1^{\top} \mathbf{g}_i\right\|_{\infty} \quad \left\|\frac{1}{j\widehat{S}_k n S_k^1 j} \sum_{\mathbf{x}_i \in \widehat{S}_k \setminus S_k^1} U_1^{\top} \mathbf{g}_i\right\|$$
(20)

Since $U_1^{\top} \mathbf{g}_i = \text{ can be treated as a } K$ -dimensional Gaussian random vector, based on the tail bound for the ² distribution (Laurent & Massart, 2000), we have with a probability at least 1 ,

$$k U_1^{\mathsf{T}} \mathbf{g}_i k \qquad \begin{pmatrix} \mathcal{P}_{\overline{K}} + \sqrt{2 \log -1} \end{pmatrix}$$

Applying the union bound again, with a probability at least 1 , we have

$$\max_{1 \le i \le |\mathcal{S}|} \left\| U_1^{\mathsf{T}} \mathbf{g}_i \right\| \qquad \left(\stackrel{\mathcal{P}}{\mathcal{K}} + \sqrt{2 \log \frac{jSj}{m}} \right)$$
(21)

Combining (20) and (21), we have

$$\widehat{B}_{k}^{2} = \frac{9}{k} \left(+ \frac{1}{jSj} \ln \frac{1}{j} \right) \left(\frac{\mathcal{P}_{\overline{K}}}{K} + \sqrt{2\log \frac{jSj}{j}} \right) = O(\sqrt{\ln jSj}) + O\left(- \frac{\sqrt{\ln jSj}}{jSj} \right); 8k \ 2 \ [K];$$
(22)

2.4.3. Upper bound of \widehat{B}_k^3

First, we have

$$\left\| \frac{1}{jS_k^1 j} \sum_{\mathbf{x}_i \in \mathcal{S}_k^1} \mathbf{g}_i^{\parallel} \right\|_{\infty} = \left\| U_1 \frac{1}{jS_k^1 j} \sum_{\mathbf{x}_i \in \mathcal{S}_k^1} U_1^{\top} \mathbf{g}_i \right\|_{\infty} \quad \left\| \frac{1}{jS_k^1 j} \sum_{\mathbf{x}_i \in \mathcal{S}_k^1} U_1^{\top} \mathbf{g}_i \right\| := u_k$$
(23)

Recall the definition of S_k^1 in (13). Due to the fact that the domain is symmetric, we have $E[U_1^T g_i] = 0$. Under the condition in (21), we can invoke the following lemma to bound u_k .

Lemma 3. (Lemma 2 from (Smale & Zhou, 2007)) Let H be a Hilbert space and be a random variable on (Z;) with values in H. Assume k k M < 1 almost surely. Denote ${}^{2}() = E(k \ k^{2})$. Let $fZ_{i}g_{i=1}^{m}$ be independent random drawers of . For any 0 < < 1, with confidence 1,

$$\left\|\frac{1}{m}\sum_{i=1}^{m}(i \in E[i])\right\| = \frac{2M\ln(2=i)}{m} + \sqrt{\frac{2^{-2}(i)\ln(2=i)}{m}}$$

From Lemma 3 and the union bound, with a probability at least 1 , we have

$$u_k \qquad \left(\overset{\mathcal{D}}{\mathcal{K}} + \sqrt{2\log\frac{jSj}{}} \right) \left(\frac{2\ln(2\mathcal{K}=)}{jS_k^1 j} + \sqrt{\frac{2\ln(2\mathcal{K}=)}{jS_k^1 j}} \right); \ 8k \ 2 \ [\mathcal{K}]:$$
(24)

Combining (23) and (24), we have

$$\widehat{B}_{k}^{3} = \begin{pmatrix} \mathcal{P}_{\overline{K}} + \sqrt{2\log\frac{jSj}{m}} \end{pmatrix} \left(\frac{2}{jS_{k}^{1}j} \ln \frac{2K}{m} + \sqrt{\frac{2}{jS_{k}^{1}j}} \ln \frac{2K^{2}}{m} \right)$$

$$(10), (14), (5) = \begin{pmatrix} \mathcal{P}_{\overline{K}} + \sqrt{2\log\frac{jSj}{m}} \end{pmatrix} 2\sqrt{\frac{9}{kjSj}} \ln \frac{2K}{m} = O\left(\sqrt{\frac{\ln jSj}{jSj}}\right); 8k \ 2[K]:$$

$$(25)$$

In summary, under the condition that (10), (14) and (15) are true, with a probability at least 1 3,

$$kB_k k_{\infty} = O(-\sqrt{\ln jSj}) + O\left(-\frac{\sqrt{\ln jSj} + \frac{D}{\ln d}}{\sqrt{jSj}}\right); 8k \ 2[K]:$$
(26)

A. Chernoff Bound

Theorem 2 (Multiplicative Chernoff Bound (Angluin & Valiant, 1979)). Let X_1, X_2, \ldots, X_n be independent binary random variables with $\Pr[X_i = 1] = p_i$. Denote $S = \sum_{i=1}^n X_i$ and $= E[S] = \sum_{i=1}^n p_i$. We have

$$\Pr[S (1)] \exp\left(-\frac{2}{2}\right); for 0 < < 1;$$

$$\Pr[S (1+)] \exp\left(-\frac{2}{2+1}\right); for > 0;$$

Therefore,

$$\Pr\left[S \quad \left(1 \quad \sqrt{\frac{2}{-}\ln\frac{1}{-}}\right)\right] \quad ; \text{ for } \exp\left(-\frac{2}{-}\right) < <1;$$
$$\Pr\left[S \quad 2 \quad + 2\ln\frac{1}{-} \quad \left(1 + \frac{\ln\frac{1}{\delta} + \sqrt{2 - \ln\frac{1}{\delta}}}{-}\right)\right] \quad ; \text{ for } 0 < <1:$$

B. Tail bounds for the Gaussian distribution

Theorem 3 (Chernoff-type upper bound for the Q-function (Chang et al., 2011)). The Q-function defined as

$$Q(x) = p \frac{1}{2} \int_{x}^{\infty} \exp\left(-\frac{t^{2}}{2}\right) dt$$

is the tail probability of the standard Gaussian distribution. When x > 0, we have

$$Q(x) = \frac{1}{2} \exp\left(-\frac{x^2}{2}\right)$$

Let X = N(0, 1) be a Gaussian random variable. According to Theorem 3, we have

$$\Pr[jXj =] \exp\left(-\frac{2}{2}\right); \text{ or }$$

$$\Pr\left[jXj = \sqrt{2\ln\frac{1}{2}}\right] :$$

References

- Angluin, D. and Valiant, L.G. Fast probabilistic algorithms for hamiltonian circuits and matchings. *Journal of Computer and System Sciences*, 18(2):155–193, 1979.
- Chang, Seok-Ho, Cosman, Pamela C., and Milstein, Laurence B. Chernoff-type bounds for the gaussian error function. *IEEE Transactions on Communications*, 59(11):2939–2944, 2011.
- Laurent, B. and Massart, P. Adaptive estimation of a quadratic functional by model selection. *The Annals of Statistics*, 28 (5):1302–1338, 2000.
- Smale, Steve and Zhou, Ding-Xuan. Learning theory estimates via integral operators and their approximations. *Constructive Approximation*, 26(2):153–172, 2007.