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Theorem 1. Let � � 1=(6m) be a parameter to control the success probability. Assume

�∗ � �1 � �max; (1)
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where c, c2 and c3 are some universal constants. Then, with a probability at least 1� 6m�, we have

�m+1 = max
1≤i≤K

kĉm+1
i � cik � max

(
�∗;

c�1

p
2m

)
:

Corollary 1. The convergence rate for �, the maximum difference between the optimal cluster centers and the estimated
ones, is O(

√
(s log d)=n) before reaching the optimal difference �∗.

1. Proof of Corollary 1

According to the assumption of �1 in (2), we know that 1
λ1 /

√
s

�1 . Since the value of T is dominated by the last term in
the right side of (3), we have T / s log d

�1·�1 , which implies

n / 2mT / 2m
s log d

�1 ��1
:
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Combining with the conclusion �m+1 / �1
√

2m
, we have

�m+1 /
√
s log d

n
:

Lemma 1. Let �t be the maximum difference between the optimal cluster centers and the ones estimated from iteration t,
and � 2 (0; 1) be the failure probability. Assume
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2
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√
5 ln (3K) , �max; (4)
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for some constants c1, c2 and c3. Then with a probability 1� 6�, we have

�t+1 � 2
p
s�t:

2. Proof of Lemma 1
For the simplicity of analysis, we will drop the superscript t through this analysis.

2.1. Preliminaries

We denote by Ck the support of ck and Ck = [d] n Ck. For any vector z, z(C) is defined as [z(C)]i = zi if i 2 C and zero,
otherwise.

For any xi 2 S, we use ki to denote the index of the true cluster, and k̂i to denote index of the cluster assigned by the
nearest neighbor search, i.e.,

xi =cki + gi and gi � N(0; �2I);

k̂i = arg max
j∈[K]

ĉ>j xi:

Then, we can partition data points in S based on either the ground truth or the assigned cluster. Let Sk be the subset of
data points in S that belong to the k-th cluster, i.e.,

Sk = fxi 2 S : xi = ck + gi and gi � N(0; �2I)g (7)

Let Ŝk be the subset of data points that are assigned to the k-th cluster based on the nearest neighbor search, i.e.,

Ŝk = fxi 2 S : k = arg max
j∈[K]

ĉ>j xig (8)

2.2. The Main Analysis

Let Lk(c) be the objective function in Step 11 of Algorithm 1. We expand Lk(c) as

Lk(c)

=�kck1 + kc� ckk2 +
1

jŜkj

∑
xi∈Ŝk

kxi � ckk2 �
2

jŜkj

∑
xi∈Ŝk

(c� ck)>(xi � ck)

=�kck1 + kc� ckk2 +
1

jŜkj

∑
xi∈Ŝk

kxi � ckk2

� 2(c� ck)>
1

jŜkj

∑
xi∈Ŝk\Sk

(cki � ck)

︸ ︷︷ ︸
Ak

�2(c� ck)>
1

jŜkj

∑
xi∈Ŝk
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︸ ︷︷ ︸
Bk

:

(9)
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Let c∗k be the optimal solution that minimizes Lk(c), and define fk = c∗k � ck. We have

Lk(c∗k)� Lk(ck)

=�kfk + ckk1 + kfkk2 � 2f>k Ak � 2f>k Bk � �kckk1
��kckk1 � �kfk(Ck)k1 + �kfk(Ck)k1 + kfkk2 � 2f>k Ak � 2f>k Bk � �kckk1
�� �kfk(Ck)k1 + �kfk(Ck)k1 + kfkk2 � 2kfkk1kAkk∞ � 2kfkk1kBkk∞
=� (�+ 2kAkk∞ + 2kBkk∞)kfk(Ck)k1 + (�� 2kAkk∞ � 2kBkk∞)kfk(Ck)k1 + kfkk2

��
√
jCkj(�+ 2kAkk∞ + 2kBkk∞)kfk(Ck)k+ (�� 2kAkk∞ � 2kBkk∞)kfk(Ck)k1 + kfkk2:

Thus, if
� � 2kAkk∞ + 2kBkk∞;

we have

kfk(Ck)k2 � kfkk2 � (�+ 2kAkk∞ + 2kBkk∞)
√
jCkjkfk(Ck)k � 2�

√
jCkjkfk(Ck)k ) kfk(Ck)k � 2�

√
jCkj;

and thus
kfkk2 � 2�

√
jCkjkfk(Ck)k � 4�2jCkj ) kfkk � 2�

√
jCkj:

In summary, if
� � 2kAkk∞ + 2kBkk∞;8k 2 [K]

we have
max

1≤k≤K
kc∗k � ckk � 2

p
s�:

In the following, we discuss how to bound kAkk∞ and kBkk∞.

2.3. Bound for kAkk∞

From the definition of Ak in (9), we have

kAkk∞ � 2�0
jŜk n Skj
jŜkj

:

2.3.1. LOWER BOUND OF jŜkj

First, we show that the size of Sk is lower-bounded, which means a significant amount of data points in S belong to the k-th
cluster. Recall that �1; : : : ; �K are the weight of the Gaussian mixtures, and �0 = min

1≤i≤K
�i. According to the Chernoff

bound (Angluin & Valiant, 1979) provided in Appendix A, we have, with a probability at least 1� �

jSkj � �kjSj

(
1�

√
2

�kjSj
ln
K

�

)
(5)
� 2

3
�kjSj; 8k 2 [K]: (10)

Next, we prove that a larger amount of data points in Sk belong to Ŝk. We begin by analyzing the probability that the
assigned cluster k̂i of xi is the true cluster ki. The similarity between xi and the estimated cluster centers can be bounded
by

ĉ>kixi =ĉ>ki(cki + gi) = kckik2 + [ĉki � cki ]
>cki + ĉ>kigi

� 1� kĉki � ckik � jĉ>kigij � 1��� (1 + �)

∣∣∣∣g>i ĉki
kĉkik

∣∣∣∣ ;
ĉ>j xi =ĉ>j (cki + gi) = c>j cki + [ĉj � cj ]

>cki + ĉ>j gi

� �+ kĉj � cjk+ jĉ>j gij � �+ � + (1 + �)

∣∣∣∣g>i ĉj
kĉjk

∣∣∣∣ ; j 6= ki:
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Hence, xi will be assigned to cluster ki if

1��� (1 + �)

∣∣∣∣g>i ĉki
kĉkik

∣∣∣∣ � �+ � + (1 + �)

∣∣∣∣g>i ĉj
kĉjk

∣∣∣∣ ; 8j 6= ki;

which leads to the following sufficient condition

max
1≤j≤K

∣∣∣∣g>i ĉj
kĉjk

∣∣∣∣ � 1� 2�� �
2(1 + �)

, g0

(4)
�

2�
√

5 ln(3K)

3
� �

√
2 ln(3K): (11)

It is easy to verify that for any fixed direction ĉ with kĉk = 1, g>i c is a Gaussian random variable with mean 0 and variance
�2. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B, we have

Pr

[
max

1≤j≤K

∣∣∣∣g>i ĉj
kĉjk

∣∣∣∣ � g0

]
� 1�K exp

(
� g2

0

2�2

)
:

Define

� = K exp

(
� g2

0

2�2

)
(11)
� 1

3
: (12)

In summary, we have proved the following lemma.

Lemma 2. Under the condition in (4), with a probability at least 1� �, xi = cki + gi 2 Ski � S satisfies

max
1≤j≤K

∣∣∣∣g>i ĉj
kĉjk

∣∣∣∣ � g0;

and is assigned to the correct cluster ki based on the nearest neighbor search (i.e., k̂i = ki).

Define

S1
k =

{
xi 2 Sk : max

1≤j≤K

∣∣∣∣g>i ĉj
kĉjk

∣∣∣∣ � g0

}
� Ŝk \ Sk: (13)

Since each data point in Sk has a probability at least 1 � � to be assigned to set S1
k , using the Chernoff bound again, we

have, with a probability at least 1� �,

jŜkj � jŜk \ Skj � jS1
k j � E

[
jS1
k j
](

1�

√
2

E [jS1
k j]

ln
K

�

)

� (1� �) jSkj

(
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√
2

(1� �) jSkj
ln
K

�

)
(12)
� 2

3
jSkj

(
1�

√
3

jSkj
ln
K

�

)
(5), (10)
� 1

3
jSkj;8k 2 [K]: (14)

2.3.2. UPPER BOUND OF jŜk n Skj

Define
O = [Kk=1S1

k � S and O = [Kk=1

(
Ŝk n S1

k

)
= S n O � S:

From Lemma 2, we know that with a probability at least 1 � �, each xi 2 Sk belongs to the set S1
k � O. Thus, with

probability at least 1� �, each xi 2 S belongs toO. In other words, with probability at most �, each xi 2 S belongs toO.
Based on the Chernoff bound, we have, with a probability at least 1� �,

jOj � 2E
[
jOj
]

+ 2 ln
1

�
� 2�jSj+ 2 ln

1

�
: (15)

Since S1
k � Sk, we have Ŝk n Sk � Ŝk n S1

k � O. Therefore, with a probability at least 1� �, we have

jŜk n Skj � 2�jSj+ 2 ln
1

�
;8k 2 [K]: (16)



A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data

Combining (10), (14) and (16), we have, with probability at least 1� 3�

kAkk∞ � 2�0

2�jSj+ 2 ln 1
ε

2
9�kjSj

=
18�0

�k

(
� +

1

jSj
ln

1

�

)
= O(��0) +O

(
�0

jSj

)
;8k 2 [K]: (17)

2.4. Bound for kBkk∞

Notice that fgi : xi 2 Ŝkg, determined by the estimated centers ĉ1; : : : ; ĉK , is a specific subset of fgi : xi 2 Sg. Although
gi is drawn from the Gaussian distribution N(0; �2I), the distribution of elements in fgi : xi 2 Ŝkg is unknown. As a
result, we cannot direct apply concentration inequality of Gaussian random vectors to bound kBkk∞. Let U1 2 Rd×K be
a matrix whose columns are basis vectors of the subspace spanned by ĉ1; : : : ; ĉK , and U2 2 Rd×(d−K) be a matrix whose
columns are basis vectors of the complementary subspace. We then divide each gi as

gi = g
‖
i + g⊥i ;

where g
‖
i = U1U

>
1 gi, and g⊥i = U2U

>
2 gi.

First, we upper bound kBkk∞ as

kBkk∞ �

∥∥∥∥∥∥ 1

jŜkj

∑
xi∈Ŝk

g⊥i

∥∥∥∥∥∥
∞︸ ︷︷ ︸

B̂1
k

+
jŜknS1

k j
jŜkj

∥∥∥∥∥∥ 1

jŜknS1
k j

∑
xi∈Ŝk\S1

k

g
‖
i

∥∥∥∥∥∥
∞︸ ︷︷ ︸

B̂2
k

+
jS1
k j
jŜkj

∥∥∥∥∥∥ 1

jS1
k j
∑

xi∈S1
k

g
‖
i

∥∥∥∥∥∥
∞︸ ︷︷ ︸

B̂3
k

: (18)

In the following, we discuss how to bound each term in the right hand side of (18).

2.4.1. UPPER BOUND OF B̂1
k

Following the property of Gaussian random vector,
∑

xi∈Ŝk U
>
2 gi=

(
�

√
jŜkj

)
can be treated as a (d �K)-dimensional

Gaussian random vector. As a result, each element of U2

∑
xi∈Ŝk U

>
2 gi=

(
�

√
jŜkj

)
is a Gaussian random variable with

variance smaller than 1. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B
and the union bound, with a probability at least 1� �, we have∥∥∥∥∥∥

∑
xi∈Ŝk

g⊥i =

(
�

√
jŜkj

)∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥U2

∑
xi∈Ŝk

U>2 gi=

(
�

√
jŜkj

)∥∥∥∥∥∥
∞

�
√

2 ln
Kd

�
;8k 2 [K];

which implies

B̂1
k � �

√
2 ln Kd

ε

jŜkj

(10), (14)
� �

√
2 ln Kd

ε

2�kjSj=9
= O

(
�

√
ln d

jSj

)
;8k 2 [K]: (19)

2.4.2. UPPER BOUND OF B̂2
k

First, we have ∥∥∥∥∥∥ 1

jŜknS1
k j

∑
xi∈Ŝk\S1

k

g
‖
i

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥ 1

jŜknS1
k j

∑
xi∈Ŝk\S1

k

U1U
>
1 gi

∥∥∥∥∥∥
∞

�

∥∥∥∥∥∥ 1

jŜknS1
k j

∑
xi∈Ŝk\S1

k

U>1 gi

∥∥∥∥∥∥ (20)

Since U>1 gi=� can be treated as a K-dimensional Gaussian random vector, based on the tail bound for the �2 distribu-
tion (Laurent & Massart, 2000), we have with a probability at least 1� �,

kU>1 gik � �

(
p
K +

√
2 log

1

�

)
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Applying the union bound again, with a probability at least 1� �, we have

max
1≤i≤|S|

∥∥U>1 gi
∥∥ � �(pK +

√
2 log

jSj
�

)
(21)

Combining (20) and (21), we have

B̂2
k �

9�

�k

(
� +

1

jSj
ln

1

�

)(p
K +

√
2 log

jSj
�

)
= O(��

√
ln jSj) +O

(
�

√
ln jSj
jSj

)
;8k 2 [K]: (22)

2.4.3. UPPER BOUND OF B̂3
k

First, we have ∥∥∥∥∥∥ 1

jS1
k j
∑

xi∈S1
k

g
‖
i

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥U1
1

jS1
k j
∑

xi∈S1
k

U>1 gi

∥∥∥∥∥∥
∞

�

∥∥∥∥∥∥ 1

jS1
k j
∑

xi∈S1
k

U>1 gi

∥∥∥∥∥∥ := uk (23)

Recall the definition of S1
k in (13). Due to the fact that the domain is symmetric, we have E

[
U>1 gi

]
= 0. Under the

condition in (21), we can invoke the following lemma to bound uk.

Lemma 3. (Lemma 2 from (Smale & Zhou, 2007)) Let H be a Hilbert space and � be a random variable on (Z; �) with
values in H. Assume k�k � M < 1 almost surely. Denote �2(�) = E(k�k2). Let fzigmi=1 be independent random
drawers of �. For any 0 < � < 1, with confidence 1� �,∥∥∥∥∥ 1

m

m∑
i=1

(�i � E[�i])

∥∥∥∥∥ � 2M ln(2=�)

m
+

√
2�2(�) ln(2=�)

m

From Lemma 3 and the union bound, with a probability at least 1� �, we have

uk � �

(
p
K +

√
2 log

jSj
�

)(
2 ln(2K=�)

jS1
k j

+

√
2 ln(2K=�)

jS1
k j

)
; 8k 2 [K]: (24)

Combining (23) and (24), we have

B̂3
k � �

(
p
K +

√
2 log

jSj
�

)(
2

jS1
k j

ln
2K

�
+

√
2

jS1
k j

ln
2K2

�

)
(10), (14), (5)
� �

(
p
K +

√
2 log

jSj
�

)
2

√
9

�kjSj
ln

2K

�
= O

(
�

√
ln jSj
jSj

)
;8k 2 [K]: (25)

In summary, under the condition that (10), (14) and (15) are true, with a probability at least 1� 3�,

kBkk∞ � O(��
√

ln jSj) +O

(
�

√
ln jSj+

p
ln d√

jSj

)
;8k 2 [K]: (26)

A. Chernoff Bound
Theorem 2 (Multiplicative Chernoff Bound (Angluin & Valiant, 1979)). Let X1, X2; : : : ; Xn be independent binary
random variables with Pr[Xi = 1] = pi. Denote S =

∑n
i=1Xi and � = E[S] =

∑n
i=1 pi. We have

Pr [S � (1� �)�] � exp

(
��

2

2
�

)
; for 0 < � < 1;

Pr [S � (1 + �)�] � exp

(
� �2

2 + �
�

)
; for � > 0:
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Therefore,

Pr

[
S �

(
1�

√
2

�
ln

1

�

)
�

]
��; for exp

(
� 2

�

)
< � < 1;

Pr

S � 2�+ 2 ln
1

�
�

1 +
ln 1

δ +
√

2� ln 1
δ

�

�

 ��; for 0 < � < 1:

B. Tail bounds for the Gaussian distribution
Theorem 3 (Chernoff-type upper bound for the Q-function (Chang et al., 2011)). The Q-function defined as

Q(x) =
1p
2�

∫ ∞
x

exp

(
� t

2

2

)
dt

is the tail probability of the standard Gaussian distribution. When x > 0, we have

Q(x) � 1

2
exp

(
�x

2

2

)
:

Let X � N (0; 1) be a Gaussian random variable. According to Theorem 3, we have

Pr [jXj � �] � exp

(
��

2

2

)
; or

Pr

[
jXj �

√
2 ln

1

�

]
� �:
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