Supplementary Material: A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data

JINFENGY@US.IBM.COM

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Lijun Zhang Zhanglj@lamda.nju.edu.cn

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Jun Wang WANGJUN@US.IBM.COM

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Rong Jin RONGJIN@CSE.MSU.EDU

Anil K. Jain

JAIN@CSE.MSU.EDU

Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 USA

Theorem 1. Let 1=(6m) be a parameter to control the success probability. Assume

$$\frac{\overline{2}}{2} \overline{\overline{2}} \overline{\overline{S}} \qquad C \overline{\overline{2}} \overline{\overline{2}} \overline{\overline{S}}$$
 (2)

$$T \quad \max\left(\frac{18}{10}\ln\frac{2K}{r}; \frac{3c}{r}; \left(\frac{6c}{r}\right) \left(\ln n + \ln d\right)\right) \tag{3}$$

where C, C and C are some universal constants. Then, with a probability at least 1 6m, we have

$$^{m} \quad = \ \max_{\leq i \leq K} k \widehat{\mathbf{C}}_{i}^{m} \qquad \mathbf{c}_{i} k \quad \max \left(\quad {}_{*} ; \frac{\mathcal{C}}{\underbrace{\overline{2^{m}}}} \right) ;$$

Corollary 1. The convergence rate for , the maximum difference between the optimal cluster centers and the estimated ones, is $O(\sqrt{(s \log d) = n})$ before reaching the optimal difference *.

1. Proof of Corollary 1

According to the assumption of in (2), we know that $\frac{\sqrt{s}}{\lambda^{1}} \neq \frac{\sqrt{s}}{1}$. Since the value of T is dominated by the last term in the right side of (3), we have $T \neq \frac{s}{1} + \frac{d}{1}$, which implies

$$n/2^mT/2^m\frac{s\log d}{s}$$

Combining with the conclusion $m / \frac{1}{\sqrt{m}}$, we have

$$_m / \sqrt{\frac{s \log d}{n}}$$
:

Lemma 1. Let t be the maximum difference between the optimal cluster centers and the ones estimated from iteration t, and 2(0;1) be the failure probability. Assume

$$t = \frac{1}{2} - \sqrt{5 \ln(3K)} , \qquad (4)$$

$$jS^tj = \frac{18}{100} \ln \frac{2K}{2K}$$
 (5)

$${}^{t} \quad c \exp\left(-\frac{(1-2^{-t})}{8(1+t)}\right) \left(-+\sqrt{\ln j S^{t}}j\right) + \frac{c}{jS^{t}j} + c - \frac{\sqrt{\ln j S^{t}}j + \frac{D}{\ln d}}{\sqrt{jS^{t}}j};$$
 (6)

for some constants C, C and C. Then with a probability 1-6, we have

$$t 2^{\mathcal{D}} = t$$

2. Proof of Lemma 1

For the simplicity of analysis, we will drop the superscript t through this analysis.

2.1. Preliminaries

We denote by C_k the support of \mathbf{c}_k and $\overline{C}_k = [d] \cap C_k$. For any vector \mathbf{z} , $\mathbf{z}(C)$ is defined as $[\mathbf{z}(C)]_i = z_i$ if $i \geq C$ and zero, otherwise.

For any $\mathbf{x}_i \supseteq S$, we use k_i to denote the index of the true cluster, and \hat{k}_i to denote index of the cluster assigned by the nearest neighbor search, i.e.,

$$\mathbf{x}_i = \mathbf{c}_{k_i} + \mathbf{g}_i \text{ and } \mathbf{g}_i \qquad \mathcal{N}(0; I);$$

$$\hat{k}_i = \underset{j \in K}{\text{arg max }} \hat{\mathbf{c}}_j^{\top} \mathbf{x}_i:$$

Then, we can partition data points in S based on either the ground truth or the assigned cluster. Let S_k be the subset of data points in S that belong to the k-th cluster, i.e.,

$$S_k = f \mathbf{x}_i \ 2 \ S : \mathbf{x}_i = \mathbf{c}_k + \mathbf{g}_i \text{ and } \mathbf{g}_i \quad N(0; I)g$$
 (7)

Let \widehat{S}_k be the subset of data points that are assigned to the k-th cluster based on the nearest neighbor search, i.e.,

$$\widehat{S}_k = f \mathbf{x}_i \ 2 \ S : k = \underset{j \in K}{\operatorname{arg max}} \widehat{\mathbf{c}}_j^{\top} \mathbf{x}_i g$$
(8)

2.2. The Main Analysis

Let $L_k(\mathbf{c})$ be the objective function in Step 11 of Algorithm 1. We expand $L_k(\mathbf{c})$ as

$$\mathcal{L}_{k}(\mathbf{c}) = k\mathbf{c}k + k\mathbf{c} \quad \mathbf{c}_{k}k + \frac{1}{j\widehat{S}_{k}j} \sum_{\mathbf{x}_{i} \in \widehat{S}_{k}} k\mathbf{x}_{i} \quad \mathbf{c}_{k}k \quad \frac{2}{j\widehat{S}_{k}j} \sum_{\mathbf{x}_{i} \in \widehat{S}_{k}} (\mathbf{c} \quad \mathbf{c}_{k})^{\top} (\mathbf{x}_{i} \quad \mathbf{c}_{k})$$

$$= k\mathbf{c}k + k\mathbf{c} \quad \mathbf{c}_{k}k + \frac{1}{j\widehat{S}_{k}j} \sum_{\mathbf{x}_{i} \in \widehat{S}_{k}} k\mathbf{x}_{i} \quad \mathbf{c}_{k}k$$

$$2(\mathbf{c} \quad \mathbf{c}_{k})^{\top} \underbrace{\frac{1}{j\widehat{S}_{k}j} \sum_{\mathbf{x}_{i} \in \widehat{S}_{k} \setminus S_{k}} (\mathbf{c}_{k_{i}} \quad \mathbf{c}_{k})}_{A_{k}} \quad 2(\mathbf{c} \quad \mathbf{c}_{k})^{\top} \underbrace{\frac{1}{j\widehat{S}_{k}j} \sum_{\mathbf{x}_{i} \in \widehat{S}_{k}} \mathbf{g}_{i}}_{B_{k}} :$$
(9)

Let c_k^* be the optimal solution that minimizes $L_k(c)$, and define $f_k = c_k^* - c_k$. We have

$$\mathcal{L}_{k}(\mathbf{c}_{k}^{*}) \quad \mathcal{L}_{k}(\mathbf{c}_{k})$$

$$= k\mathbf{f}_{k} + \mathbf{c}_{k}k + k\mathbf{f}_{k}k \quad 2\mathbf{f}_{k}^{\top}A_{k} \quad 2\mathbf{f}_{k}^{\top}B_{k} \quad k\mathbf{c}_{k}k$$

$$k\mathbf{c}_{k}k \quad k\mathbf{f}_{k}(C_{k})k + k\mathbf{f}_{k}(\overline{C}_{k})k + k\mathbf{f}_{k}k \quad 2\mathbf{f}_{k}^{\top}A_{k} \quad 2\mathbf{f}_{k}^{\top}B_{k} \quad k\mathbf{c}_{k}k$$

$$k\mathbf{f}_{k}(C_{k})k + k\mathbf{f}_{k}(\overline{C}_{k})k + k\mathbf{f}_{k}k \quad 2k\mathbf{f}_{k}k \quad kA_{k}k_{\infty} \quad 2k\mathbf{f}_{k}k \quad kB_{k}k_{\infty}$$

$$= (+ 2kA_{k}k_{\infty} + 2kB_{k}k_{\infty})k\mathbf{f}_{k}(C_{k})k + (\quad 2kA_{k}k_{\infty} \quad 2kB_{k}k_{\infty})k\mathbf{f}_{k}(\overline{C}_{k})k + k\mathbf{f}_{k}k$$

$$\sqrt{jC_{k}j}(+ 2kA_{k}k_{\infty} + 2kB_{k}k_{\infty})k\mathbf{f}_{k}(C_{k})k + (\quad 2kA_{k}k_{\infty} \quad 2kB_{k}k_{\infty})k\mathbf{f}_{k}(\overline{C}_{k})k + k\mathbf{f}_{k}k$$

Thus, if

$$2kA_kk_{\infty} + 2kB_kk_{\infty}$$
;

we have

$$k\mathbf{f}_{k}(C_{k})k$$
 $k\mathbf{f}_{k}k$ $(+2k\mathbf{A}_{k}k_{\infty}+2k\mathbf{B}_{k}k_{\infty})\sqrt{jC_{k}}jk\mathbf{f}_{k}(C_{k})k$ $2\sqrt{jC_{k}}jk\mathbf{f}_{k}(C_{k})k$ $)$ $k\mathbf{f}_{k}(C_{k})k$ $2\sqrt{jC_{k}}jk\mathbf{f}_{k}(C_{k})k$

and thus

$$k\mathbf{f}_k k$$
 2 $\sqrt{jC_k}jk\mathbf{f}_k(C_k)k$ 4 $jC_k j$) $k\mathbf{f}_k k$ 2 $\sqrt{jC_k}j$:

In summary, if

$$2kA_kk_{\infty} + 2kB_kk_{\infty}; 8k \ 2[K]$$

we have

$$\max_{\leq k \leq K} k \mathbf{c}_k^* \quad \mathbf{c}_k k \quad 2^{\mathcal{D}} \bar{\mathbf{s}} :$$

In the following, we discuss how to bound kA_kk_∞ and kB_kk_∞ .

2.3. Bound for kA_kk_{∞}

From the definition of A_k in (9), we have

$$kA_kk_\infty$$
 2 $\frac{j\widehat{S}_k \, n \, S_k j}{j\widehat{S}_k j}$:

2.3.1. Lower bound of $j\widehat{S}_k j$

First, we show that the size of S_k is lower-bounded, which means a significant amount of data points in S belong to the k-th cluster. Recall that $S_k : S_k : S$

$$jS_k j = {}_{k} jS j \left(1 - \sqrt{\frac{2}{k^j S^j}} \ln \frac{K}{M}\right)^{(5)} \frac{2}{3} {}_{k} jS j; \ 8k \ 2 [K]:$$
 (10)

Next, we prove that a larger amount of data points in S_k belong to \widehat{S}_k . We begin by analyzing the probability that the assigned cluster \widehat{k}_i of \mathbf{x}_i is the true cluster k_i . The similarity between \mathbf{x}_i and the estimated cluster centers can be bounded by

Hence, \mathbf{x}_i will be assigned to cluster k_i if

1
$$(1 +) \left| \mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{k_{i}}}{k \widehat{\mathbf{c}}_{k_{i}} k} \right| + + (1 +) \left| \mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{j}}{k \widehat{\mathbf{c}}_{j} k} \right| ; \ 8j \in k_{i};$$

which leads to the following sufficient condition

$$\max_{\leq j \leq K} \left| \mathbf{g}_i^\top \frac{\widehat{\mathbf{c}}_j}{k \widehat{\mathbf{c}}_j k} \right| \quad \frac{1}{2(1+)}, \quad g \stackrel{\text{(4)}}{=} \frac{2\sqrt{5\ln(3K)}}{3} \qquad \sqrt{2\ln(3K)}. \tag{11}$$

It is easy to verify that for any fixed direction $\hat{\mathbf{c}}$ with $k\hat{\mathbf{c}}k = 1$, $\mathbf{g}_i^{\top}\mathbf{c}$ is a Gaussian random variable with mean 0 and variance . Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B, we have

$$\Pr\left[\begin{array}{c|c} \max_{\leq j \leq K} \left| \mathbf{g}_i^\top \frac{\widehat{\mathbf{c}}_j}{k \widehat{\mathbf{c}}_j k} \right| & g \end{array}\right] \quad 1 \quad \mathcal{K} \exp\left(-\frac{g}{2}\right) :$$

Define

$$= K \exp\left(-\frac{g}{2}\right)^{(11)} \frac{1}{3}$$
 (12)

In summary, we have proved the following lemma.

Lemma 2. Under the condition in (4), with a probability at least 1 , $\mathbf{x}_i = \mathbf{c}_{k_i} + \mathbf{g}_i \ 2 \ S_{k_i}$ S satisfies

$$\max_{\leq j \leq K} \left| \mathbf{g}_i^\top \frac{\widehat{\mathbf{c}}_j}{k \widehat{\mathbf{c}}_j k} \right| \quad g \ ;$$

and is assigned to the correct cluster k_i based on the nearest neighbor search (i.e., $\hat{k}_i = k_i$).

Define

$$S_k = \left\{ \mathbf{x}_i \ 2 \ S_k : \max_{\leq j \leq K} \left| \mathbf{g}_i^{\top} \frac{\widehat{\mathbf{c}}_j}{k \widehat{\mathbf{c}}_j k} \right| \quad g \right\} \quad \widehat{S}_k \setminus S_k :$$
 (13)

Since each data point in S_k has a probability at least 1 to be assigned to set S_k , using the Chernoff bound again, we have, with a probability at least 1 ,

$$j\widehat{S}_{k}j \quad j\widehat{S}_{k} \setminus S_{k}j \quad jS_{k}j \quad \mathsf{E}\left[jS_{k}j\right] \left(1 \quad \sqrt{\frac{2}{\mathsf{E}\left[jS_{k}j\right]}} \ln \frac{K}{K}\right)$$

$$(1 \quad)jS_{k}j \left(1 \quad \sqrt{\frac{2}{(1 \quad)jS_{k}j}} \ln \frac{K}{K}\right)$$

$$(12) \quad \frac{2}{3}jS_{k}j \left(1 \quad \sqrt{\frac{3}{jS_{k}j}} \ln \frac{K}{K}\right) \quad (5), (10) \quad \frac{1}{3}jS_{k}j; 8k \ 2 \left[K\right]; \tag{14}$$

2.3.2. Upper bound of $j\widehat{S}_k$ n $S_k j$

Define

$$O = \begin{bmatrix} K \\ k \end{bmatrix} S_k$$
 $S \text{ and } \overline{O} = \begin{bmatrix} K \\ k \end{bmatrix} (\widehat{S}_k \cap S_k) = S \cap O$ S :

From Lemma 2, we know that with a probability at least 1 , each $\mathbf{x}_i \ 2 \ S_k$ belongs to the set $S_k \ O$. Thus, with probability at least 1 , each $\mathbf{x}_i \ 2 \ S$ belongs to O. In other words, with probability $at \ most$, each $\mathbf{x}_i \ 2 \ S$ belongs to O. Based on the Chernoff bound, we have, with a probability at least 1 ,

$$|\overline{jO}| = 2E |\overline{jO}| + 2 \ln \frac{1}{2} + 2 \ln \frac{1}{2}$$
 (15)

Since $S_k = S_k$, we have $\widehat{S}_k \cap S_k = \widehat{S}_k \cap S_k = \overline{O}$. Therefore, with a probability at least 1 , we have

$$j\widehat{S}_k \, n \, S_k j = 2 \, j S j + 2 \ln \frac{1}{2}; 8k \, 2 \, [K];$$
 (16)

Combining (10), (14) and (16), we have, with probability at least 1 3

$$kA_k k_\infty = 2 \frac{2 jSj + 2 \ln \frac{1}{\epsilon}}{-kjSj} = \frac{18}{k} \left(+ \frac{1}{jSj} \ln \frac{1}{\epsilon} \right) = O(-) + O\left(\frac{1}{jSj}\right); 8k \ 2[K];$$
 (17)

2.4. Bound for $kB_k k_{\infty}$

Notice that $fg_i: \mathbf{x}_i \supseteq \widehat{S}_k g$, determined by the estimated centers $\widehat{\mathbf{c}} : \ldots : \widehat{\mathbf{c}}_K$, is a specific subset of $f\mathbf{g}_i: \mathbf{x}_i \supseteq Sg$. Although \mathbf{g}_i is drawn from the Gaussian distribution N(0; I), the distribution of elements in $f\mathbf{g}_i: \mathbf{x}_i \supseteq \widehat{S}_k g$ is unknown. As a result, we cannot direct apply concentration inequality of Gaussian random vectors to bound kB_kk_∞ . Let $U \supseteq \mathbb{R}^{d\times K}$ be a matrix whose columns are basis vectors of the subspace spanned by $\widehat{\mathbf{c}} : \ldots : \widehat{\mathbf{c}}_K$, and $U \supseteq \mathbb{R}^{d\times d-K}$ be a matrix whose columns are basis vectors of the complementary subspace. We then divide each \mathbf{g}_i as

$$g_i = g_i^{\parallel} + g_i^{\perp}$$

where $\mathbf{g}_{i}^{\parallel} = U \ U^{\top} \mathbf{g}_{i}$ and $\mathbf{g}_{i}^{\perp} = U \ U^{\top} \mathbf{g}_{i}$.

First, we upper bound kB_kk_{∞} as

$$kB_{k}k_{\infty} = \underbrace{\left\| \frac{1}{j\widehat{S}_{k}j} \sum_{\mathbf{x}_{i} \in \widehat{S}_{k}} \mathbf{g}_{i}^{\perp} \right\|_{\infty}}_{\widehat{B}_{k}^{1}} + \underbrace{\frac{j\widehat{S}_{k}nS_{k}j}{j\widehat{S}_{k}j} \left\| \frac{1}{j\widehat{S}_{k}nS_{k}j} \sum_{\mathbf{x}_{i} \in \widehat{S}_{k} \setminus S_{k}^{1}} \mathbf{g}_{i}^{\parallel} \right\|_{\infty}}_{\widehat{B}_{k}^{2}} + \underbrace{\frac{jS_{k}j}{j\widehat{S}_{k}j} \left\| \frac{1}{jS_{k}j} \sum_{\mathbf{x}_{i} \in S_{k}^{1}} \mathbf{g}_{i}^{\parallel} \right\|_{\infty}}_{\widehat{B}_{k}^{3}} :$$
(18)

In the following, we discuss how to bound each term in the right hand side of (18).

2.4.1. Upper bound of \widehat{B}_{l} .

Following the property of Gaussian random vector, $\sum_{\mathbf{x}_i \in \widehat{\mathcal{S}}_k} U^{\top} \mathbf{g}_i = \left(\sqrt{j} \widehat{\mathcal{S}}_k j \right)$ can be treated as a $(d \ \mathcal{K})$ -dimensional Gaussian random vector. As a result, each element of $U \sum_{\mathbf{x}_i \in \widehat{\mathcal{S}}_k} U^{\top} \mathbf{g}_i = \left(\sqrt{j} \widehat{\mathcal{S}}_k j \right)$ is a Gaussian random variable with variance smaller than 1. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B and the union bound, with a probability at least 1 , we have

$$\left\| \sum_{\mathbf{x}_{i} \in \widehat{S}_{k}} \mathbf{g}_{i}^{\perp} = \left(\sqrt{j} \widehat{S}_{k} j \right) \right\|_{\mathbf{x}_{i}} = \left\| U \sum_{\mathbf{x}_{i} \in \widehat{S}_{k}} U^{\top} \mathbf{g}_{i} = \left(\sqrt{j} \widehat{S}_{k} j \right) \right\|_{\mathbf{x}_{i}} = \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\| \sqrt{2 \ln \frac{K d}{J}} \right\|_{\mathbf{x}_{i}} + \left(\sqrt{j} \widehat{S}_{k} j \right) \left\|$$

which implies

$$\widehat{B}_{k} \qquad \sqrt{\frac{2 \ln \frac{Kd}{\epsilon}}{j \widehat{S}_{k} j}} \quad \sqrt{\frac{2 \ln \frac{Kd}{\epsilon}}{2 k j S j = 9}} = O\left(\sqrt{\frac{\ln d}{j S j}}\right) ; 8k \ 2 [K] : \tag{19}$$

2.4.2. Upper bound of \widehat{B}_k

First, we have

$$\left\| \frac{1}{j\widehat{S}_k n S_k j} \sum_{\mathbf{x}_i \in \widehat{S}_k \setminus S_k^1} \mathbf{g}_i^{\parallel} \right\|_{\infty} = \left\| \frac{1}{j\widehat{S}_k n S_k j} \sum_{\mathbf{x}_i \in \widehat{S}_k \setminus S_k^1} U U^{\top} \mathbf{g}_i \right\|_{\infty} \quad \left\| \frac{1}{j\widehat{S}_k n S_k j} \sum_{\mathbf{x}_i \in \widehat{S}_k \setminus S_k^1} U^{\top} \mathbf{g}_i \right\|$$
(20)

Since $U^{\top}\mathbf{g}_{i}$ = can be treated as a K-dimensional Gaussian random vector, based on the tail bound for the distribution (Laurent & Massart, 2000), we have with a probability at least 1

$$kU^{\mathsf{T}}\mathbf{g}_{i}k \qquad \left(\mathcal{P}_{\overline{K}} + \sqrt{2\log\frac{1}{-}}\right)$$

Applying the union bound again, with a probability at least 1 , we have

$$\max_{\leq i \leq |\mathcal{S}|} \|U^{\mathsf{T}} \mathbf{g}_i\| \qquad \left(\mathcal{P}_{\overline{K}} + \sqrt{2 \log \frac{j \mathcal{S} j}{L}}\right) \tag{21}$$

Combining (20) and (21), we have

$$\widehat{B}_{k} = \frac{9}{k} \left(+ \frac{1}{jSj} \ln \frac{1}{j} \right) \left(\stackrel{\mathcal{D}}{K} + \sqrt{2 \log \frac{jSj}{j}} \right) = O(-\sqrt{\ln jSj}) + O\left(-\frac{\sqrt{\ln jSj}}{jSj}\right); 8k \ 2 \ [K];$$
 (22)

2.4.3. Upper bound of \widehat{B}_k

First, we have

$$\left\| \frac{1}{jS_k j} \sum_{\mathbf{x}_i \in \mathcal{S}_k^1} \mathbf{g}_i^{\parallel} \right\|_{\infty} = \left\| U \frac{1}{jS_k j} \sum_{\mathbf{x}_i \in \mathcal{S}_k^1} U^{\top} \mathbf{g}_i \right\|_{\infty} \left\| \frac{1}{jS_k j} \sum_{\mathbf{x}_i \in \mathcal{S}_k^1} U^{\top} \mathbf{g}_i \right\| := u_k$$
 (23)

Recall the definition of S_k in (13). Due to the fact that the domain is symmetric, we have $E\left[U^{\top}\mathbf{g}_i\right]=0$. Under the condition in (21), we can invoke the following lemma to bound u_k .

$$\left\| \frac{1}{m} \sum_{i=1}^{m} (i \in E[i]) \right\| = \frac{2M \ln(2=i)}{m} + \sqrt{\frac{2(i) \ln(2=i)}{m}}$$

From Lemma 3 and the union bound, with a probability at least 1 , we have

$$u_{k} \qquad \left({}^{\cancel{\mathcal{P}}}\overline{K} + \sqrt{2\log\frac{jSj}{}} \right) \left(\frac{2\ln(2K=)}{jS_{k}j} + \sqrt{\frac{2\ln(2K=)}{jS_{k}j}} \right); \ 8k \ 2[K]; \tag{24}$$

Combining (23) and (24), we have

$$\widehat{B}_{k} \qquad \left({}^{\mathcal{D}}\overline{K} + \sqrt{2\log \frac{jSj}{}} \right) \left(\frac{2}{jS_{k}j} \ln \frac{2K}{} + \sqrt{\frac{2}{jS_{k}j}} \ln \frac{2K}{} \right)$$

$$(10), (14), (5) \qquad \left({}^{\mathcal{D}}\overline{K} + \sqrt{2\log \frac{jSj}{}} \right) 2\sqrt{\frac{9}{kjSj}} \ln \frac{2K}{} = O\left(\sqrt{\frac{\ln jSj}{jSj}}\right); 8k \ 2[K]:$$

$$(25)$$

In summary, under the condition that (10), (14) and (15) are true, with a probability at least 1 3,

$$kB_k k_\infty = O(-\sqrt{\ln jS_j}) + O\left(-\frac{\sqrt{\ln jS_j} + \rho \overline{\ln d}}{\sqrt{jS_j}}\right); 8k \ 2[K]:$$
 (26)

A. Chernoff Bound

Theorem 2 (Multiplicative Chernoff Bound (Angluin & Valiant, 1979)). Let X, X; ...; X_n be independent binary random variables with $\Pr[X_i = 1] = p_i$. Denote $S = \sum_i^n X_i$ and $= E[S] = \sum_i^n p_i$. We have

$$\Pr[S \quad (1 \quad)] \quad \exp\left(-\frac{1}{2}\right); for \quad 0 < < 1;$$

$$\Pr[S \quad (1 +)] \quad \exp\left(-\frac{1}{2 + 1}\right); for > 0:$$

Therefore,

$$\Pr\left[S \quad \left(1 \quad \sqrt{\frac{2}{-}\ln\frac{1}{-}}\right) \quad \right] \quad \text{; for } \exp\left(-\frac{2}{-}\right) < < 1;$$

$$\Pr\left[S \quad 2 \quad + 2\ln\frac{1}{-} \quad \left(1 + \frac{\ln\frac{1}{\delta} + \sqrt{2 - \ln\frac{1}{\delta}}}{2}\right) \quad \right] \quad \text{; for } 0 < < 1;$$

B. Tail bounds for the Gaussian distribution

Theorem 3 (Chernoff-type upper bound for the *Q*-function (Chang et al., 2011)). The *Q*-function defined as

$$Q(x) = \frac{1}{2} \int_{x}^{\infty} \exp\left(-\frac{t}{2}\right) dt$$

is the tail probability of the standard Gaussian distribution. When x > 0, we have

$$Q(x) = \frac{1}{2} \exp\left(-\frac{x}{2}\right)$$
:

Let $X \cap \mathcal{N}(0,1)$ be a Gaussian random variable. According to Theorem 3, we have

Pr
$$[jXj]$$
 exp $\left(\frac{\pi}{2}\right)$; or Pr $\left[jXj - \sqrt{2\ln\frac{1}{\pi}}\right]$:

References

Angluin, D. and Valiant, L.G. Fast probabilistic algorithms for hamiltonian circuits and matchings. *Journal of Computer and System Sciences*, 18(2):155–193, 1979.

Chang, Seok-Ho, Cosman, Pamela C., and Milstein, Laurence B. Chernoff-type bounds for the gaussian error function. *IEEE Transactions on Communications*, 59(11):2939–2944, 2011.

Laurent, B. and Massart, P. Adaptive estimation of a quadratic functional by model selection. *The Annals of Statistics*, 28 (5):1302–1338, 2000.

Smale, Steve and Zhou, Ding-Xuan. Learning theory estimates via integral operators and their approximations. *Constructive Approximation*, 26(2):153–172, 2007.