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Theorem 1. Let 1=(6m) be a parameter to control the success probability. Assume
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where C, Co and C3 are some universal constants. Then, with a probability at least1 6m , we have
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Corollary 1. The convergence rate for , the maximum difference between the optimal cluster centers and the estimated

ones, is O(+/(slogd)=n) before reaching the optimal difference .

1. Proof of Corollary 1

According to the assumption of 1 in (2), we know that A—ll / LE Since the value of T is dominated by the last term in
the right side of (3), we have T / % which implies
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Combining with the conclusion  ,,4+1 / we have

Lemmal. Let ° be the maximum difference between the optimal cluster centers and the ones estimated from iteration t,
and 2 (0;1) be the failure probability. Assume
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for some constants C1, Co and C3. Then with a probability 1 6 , we have

t+1 2p§ ¢

2. Proof of Lemma 1

For the simplicity of analysis, we will drop the superscript t through this analysis.

2.1. Preliminaries

We denote by C;, the support of ¢, and C;, = [d] n C;. For any vector z, z(C) is defined as [z(C)]; = z; if i 2 C and zero,
otherwise.

For any x; 2 S, we use k; to denote the index of the true cluster, and E to denote index of the cluster assigned by the
nearest neighbor search, i.e.,

x; =c, +g;andg;  N(0; 21);
k; =arg max¢; X;:
JEIK]
Then, we can partition data points in S based on either the ground truth or the assigned cluster. Let Sy, be the subset of
data points in S that belong to the k-th cluster, i.e.,

S,=fx;2S:x;=c,+g;andg; N(O; ?I)g (7
Let Sy, be the subset of data points that are assigned to the k-th cluster based on the nearest neighbor search, i.e.,
Sk =1Tx; 2S : k = argmax¢; x,g (8)
JEIK]

2.2. The Main Analysis
Let L (c) be the objective function in Step 11 of Algorithm 1. We expand Lj(c) as

Lx(c)
1 2
= keky +ke  cpk®+ —— Y kx; ck®  —<— Y (¢ ) ( cp)
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Let c; be the optimal solution that minimizes L (c), and define f, = c;  c,. We have

Le(ci)  Li(ck)
= Kkfy + ks + Kk k2  2f7 A, 2f7 B, kepks
keeky  Kf(Cr)ki + Kf(Cidky + kfuk?  2f7 A,  2f7B.  kepks
Kfe(Ci)ke + Kf(Ci)ke + kfrk?  2kfokikArks,  2kFrkikBrkoo
= ( +2kArkeo + 2kBrkoo K (Ci)ke + ( 2kArKeo  2KBrkoo )k, (Cr)ky + kfik?
ViC( + 2KAKoo + 2KBikoo)KFr (Co)k + ( 2kArkee  2KBrkoo)KF(Cr)ky + Kfk?:
Thus, if
2kArKso + 2kBrKoo;

we have

kfr(Cr)k?®  Kkfrk?  ( + 2kArKoo + 2kBrkoo)V/JCrikfr(Cr)k 2 /[Crikfr(Cr)k D kfr(Cr)k 2 /iChi;

and thus
kfrk? 2 \/jCLikfL(C)k 4 2jCij D kfrk 2 +/jChj:
In summary, if
2kA Koo + 2kBrkoo; 8k 2 [K]

we have
* pf .
max kc; cgk 2 s :
1<k<K

In the following, we discuss how to bound kAik., and kByKee.

2.3. Bound for kA, Kk

From the definition of A in (9), we have R
KAgks 2 oENSH,
JSki

2.3.1. LOWER BOUND OF jSij

First, we show that the size of Sy, is lower-bounded, which means a significant amount of data points in S belong to the k-th

cluster. Recall that i;:::; x are the weight of the Gaussian mixtures, and ¢ = 1g1{i<nK i. According to the Chernoff
_7’_

bound (Angluin & Valiant, 1979) provided in Appendix A, we have, with a probability at least 1

. . 2 K\®2 .
ISk &S] <1 kij'”) 3 kiSj; 8k 2 [KI: (10)

Next, we prove that a larger amount of data points in Sy belong to Sk. We begin by analyzing the probability that the
assigned cluster k; of x; is the true cluster k;. The similarity between x; and the estimated cluster centers can be bounded
by

€ %; =Cy (C, + 0;) = ke, k> + [, ¢ 1"y, +Cp0;

. T Cr,
1 KkCr, cik jc;gij 1 a+ )lg' kézlk‘;
€/ x; =€} (cr, +9i) =cjcr, +[€; cjllc, +€] g
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Hence, x; will be assigned to cluster k; if

| IR | AL L
i J

which leads to the following sufficient condition

max
1<G<K

C; 1 2 @ 2 /5In(3K) ,
h ' — V/2In(3K): (11)
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It is easy to verify that for any fixed direction € with kck = 1, g, ¢ is a Gaussian random variable with mean 0 and variance
2. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B, we have

TG ﬁ .
Pr Lr<njeéxK g; kéjk’ go] 1 Kexp( 5 2) :
Define 2\
- 9 |\ WL
—Kexp< > 2) 3 12)

In summary, we have proved the following lemma.
Lemma 2. Under the condition in (4), with a probability at least 1 ,X; =Cr, +09; 2Sk, S satisfies

T %
" kejk

Jo,

ax
1<G<K

and is assigned to the correct cluster K; based on the nearest neighbor search (i.e., K; = K;).

Define ~
1)y : T G & :
S = {xl 2S,: 12“;‘%{ o; G,k go} S, \S;: (13)

Since each data point in S has a probability at least 1 to be assigned to set S, using the Chernoff bound again, we
have, with a probability at least 1

~ ~ 2 K
. . - - - 1 . 1. 0w
iSti ISk \Sii iSii  E[iSii] (l 6 In )
2 K
@ )i u( \/ @ )iSH )
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2.3.2. UPPER BOUND OF S, n Sgj

Define - R
o=[K,s! SandO=[K, (sk nsg) =Sno S:

From Lemma 2, we know that with a probability at least 1 , each x; 2 Sy belongs to the set S} O. Thus, with
probability atleast 1, each X; 2 S belongs to O. In other words, with probability at most , each x; 2 S belongs to O.
Based on the Chernoff bound, we have, with a probability at least 1

— — 1 . 1

jOj 2E[jOj] +2In= 2 jSj+2In=: (15)

Since S!Sy, wehave S, nS, SynS! O. Therefore, with a probability at least 1, we have

iSenSij 2 ij+2In};8k2[K]: (16)
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Combining (10), (14) and (16), we have, with probability at least1 3

2 jSj+2Int 180< 1 1) (0)
2 s - ( 0+0 (g [K] )

kArkee 20 iS]

2.4. Bound for kB k.

g; is drawn from the Gaussian distribution N (0; 21), the distribution of elements in fg, : X; 2 §kg is unknown. As a
result, we cannot direct apply concentration inequality of Gaussian random vectors to bound kBK... Let Uy 2 R¥*K pe

columns are basis vectors of the complementary subspace. We then divide each g; as

g; = 9! +a;
where g! = U;U[ g,, and g+ = U,U, g,
First, we upper bound kBk., as
KBk [ == gt + iSinSi |1 = > gl o+ iSg) L S dl|l (18)
ISkj 3 ISkj  ||ISknS;j wemst iSki ||1Sk] o
B} B2 B3

In the following, we discuss how to bound each term in the right hand side of (18).
2.4.1. UPPER BOUND OF B}
Following the property of Gaussian random vector, ine§k U, gi= ( \/jSAkj) can be treated asa (d  K)-dimensional

Gaussian random vector. As a result, each element of U, Zx-e§k U, g;= jSkj | is a Gaussian random variable with

variance smaller than 1. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B
and the union bound, with a probability at least1  , we have

Z 9f=< \/JSATJ> =||Uz2 Z UJQF( \/j§kj> Zan7d§8k2[K];

Xz‘€§k ) xi€§k

. 21In £4 (10, 19) 2In £4 Ind
Bi — —<t_=0 — |8k 2 [K]: (19)
VS 2 1jSj=9 ( \ isi

2.4.2. UPPER BOUND OF B2

oo

which implies

First, we have

1 I 1 T 1 T
_ I == U.U; g; _ U g; 20
Sonsi) > g s > ulfg s > Ulg (20)

J x7:6§k\8,% J quegk\si 50 ] xiegk\si

Since Ufgi: can be treated as a K-dimensional Gaussian random vector, based on the tail bound for the 2 distribu-
tion (Laurent & Massart, 2000), we have with a probability at least 1

kU, g;k <pK+ \/2log l)
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Applying the union bound again, with a probability at least 1, we have

P— iSi
 max U gi| ( K +1/2log ) (1)
Combining (20) and (21), we have
B2 9( +$| 1) (p \/2Iogjsj> =0o( \/Ianj)+O< ng:51> 8k 2 [K]: 22)
k

2.4.3. UPPER BOUND OF B3

First, we have

= U (23)

Jklzg
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1
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Recall the definition of S in (13). Due to the fact that the domain is symmetric, we have E [U;'g;] = 0. Under the
condition in (21), we can invoke the following lemma to bound uy.

Lemma 3. (Lemma 2 from (Smale & Zhou, 2007)) Let H be a Hilbert space and be a random variable on (Z; ) with
values in H. Assume kK K~ M < 1 almost surely. Denote ?( ) = E(k k?). Let fz,9", be independent random
drawers of . Forany 0 < <1, with confidence 1

1 2MIn@2=) /2 2()In(2=))
a i=1 m m

Z( i E[D
From Lemma 3 and the union bound, with a probability at least 1, we have

P jSj 2In(2K= ) 2In(2K=)\ )
U <K+\/2Ig >< iS3] + 4/ s3] >,8k2[K]. (24)

Combining (23) and (24), we have

_ p— [ 35\ [ 2 . 2K 2 2K?
83 K + 2log — —In— + —In——
g ( g ) (JS%J iSii )
(10), (14), (5)
P 2109 ) 2, /-2 inZK —o /TSI gk 2 k] (25)
kiS] iSi

In summary, under the condition that (10), (14) and (15) are true, with a probability at least1 3,

_ p__
KBik O \/Ianj)+O< V”“Sjj\/%j"‘d>;sk2[|<]: (26)

A. Chernoff Bound

Theorem 2 (Multiplicative Chernoff Bound (Angluin & Valiant, 1979)). Let X1, X;:::;X,, be independent binary
random variables with Pr[X; = 1] = p;. Denote S = \_ X, and = E[S]=Y""_, p.. We have

2

Pr[S (1 )] exp( 2);f0r0< <1

2

Pr[S (1+ )] exp< >;f0r > 0:

2+
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Pr[S (1 2Inl) ] ;forexp< 2>< <1;
Int+./2 Int
Prls 2 +2mt [1+-2 VZ "0 Sfor0< <1

Therefore,

>

B. Tail bounds for the Gaussian distribution
Theorem 3 (Chernoff-type upper bound for the Q-function (Chang et al., 2011)). The Q-function defined as

1 [ t?
QX)) = 192: exp 0 dt
is the tail probability of the standard Gaussian distribution. When X = 0, we have
1 x?
Q) Eexp < 2) :
Let X N (0; 1) be a Gaussian random variable. According to Theorem 3, we have
2
PrijXj ] exp ( 2) ;or

o
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