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using the restarted strategy for non-stationary environ-
ments is not new, which has been applied in various
scenarios, including non-stationary online convex op-
timization [Besbes et al., 2015], MAB with abrupt
changes [Allesiardo et al., 2017], and MAB with grad-
ual changes [Besbes et al., 2019]. However, to the best
of our knowledge, our work is the �rst time to apply
the restarted strategy to non-stationary linear bandits
and generalized linear bandits.

3 Our Approach

In this section, we describe the proposed algorithm
and present the main theoretical result, a near-
optimal eO(d2/3(1 + PT )1/3T 2/3) dynamic regret for
non-stationary linear bandits.

3.1 Setting and Assumptions

Setting. In non-stationary (in�nite-armed) linear
bandits, at each iteration t, let xt ∈ X ⊆ Rd be the
contextual information and rt be the reward, and the
model is assumed to be linearly parameterized, i.e.,

rt = xT
t �t + �t; (4)

where �t ∈ Rd is the unknown parameter and �t is the
noise satisfying certain tail condition speci�ed below.

Assumptions. We assume the noise �t be condition-
ally R-sub-Gaussian with a �xed constant R > 0. That
is, E[�t | X1:t; �1:t�1] = 0, and for any � ∈ R,

E[exp(��t) | X1:t; �1:t�1] ≤ exp
�
�2R2=2

�
;

The feasible set and unknown parameters are assumed
to be bounded, i.e., ∀x ∈ X , ‖x‖2 ≤ L, and ‖�t‖2 ≤ S
holds for all t ∈ [T ]. For convenience, we further assume
〈x; �t〉 ≤ 1, but we will keep the dependence in L and
S for better comprehension of the results.

3.2 RestartUCB Algorithm

RestartUCB algorithm has two key ingredients: up-
per con�dence bounds for the exploration{exploitation
trade-o�, and the restarted strategy for handling the
non-stationarity of environments.

Speci�cally, our proposed RestartUCB algorithm pro-
ceeds in epochs. At each iteration, we �rst estimate
the unknown regression parameter from historical data
within the epoch, and then construct upper con�dence
bounds of the expected reward for selecting the arm.
Finally, we periodically restart the algorithm to be
resilient to the drift of underlying parameter �t.

In the following, we �rst specify the estimator used in
the RestartUCB algorithm, then investigate its esti-

mate error to construct upper con�dence bounds, and
�nally describe the restarted strategy.

3.2.1 Estimator

At iteration t, we adopt the regularized least square
estimator by only exploiting data in the current epoch,

b�t = arg min
θ

�‖�‖22 +

t�1X
s=t0

(XT
s � − rs)2; (5)

where t0 is the starting point of the current epoch,
and � > 0 is the regularization coe�cient. Clearly, b�t
admits a closed-form solution as

b�t = V �1
t�1

 
t�1X
s=t0

rsXs

!
; (6)

where Vt�1 = �I +
Pt�1
s=t0

XsX
T
s . We remark that the

estimator (6) (essentially, both the terms of Vt�1 andPt�1
s=t0

rsXs) can be updated online without storing
historical data in the memory owing to the restarted
strategy. Furthermore, it is known that (5) can be
exactly solved by the recursive least square algorithm,
whose solution is provably equivalent to the closed-form
expression (6). This feature can further accelerate our
approach in that it saves the computation of the inverse
of covariance matrix Vt�1, which is arguably the most
time-consuming step at each iteration.

By contrast, Cheung et al. [2019a] adopted the following
sliding window least square estimator,

b�sw
t = (V sw

t�1)�1

 
t�1X

s=1_(t�w)

rsXs

!
; (7)

where V sw
t�1 = �I+

Pt�1
s=1_(t�w)XsX

T
s is the covariance

matrix formed by historical data in the sliding window
and w > 0 is the window length. For online update,
WindowUCB will remove the oldest data item in the
window and then add the new item. So it requires
to store the nearest w data items in the memory for
future update, resulting in an O(w) space complexity
which cannot be regarded as a constant because the
setting of w depends on the time horizon T .

3.2.2 Upper Con�dence Bounds

Based on the estimator b�t in (6), we further construct
upper con�dence bounds for the expected reward. To
this end, it is required to investigate the estimate error.
Inspired by the analysis of WindowUCB [Cheung et al.,
2019a], we have the following result.

Lemma 1. For any t ∈ [T ] and � ∈ (0; 1), with proba-
bility at least 1− �, the following holds for all x ∈ X ,

|xT(�t − b�t)| ≤ L t�1X
p=t0

‖�p − �p+1‖2 + �t‖x‖V −1
t−1
; (8)
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where �t is the radius of confidence region,

�t =
√
�S+R

s
2 log

1

�
+ d log

�
1 +

(t− t0)L2

�d

�
: (9)

The estimate error (8) essentially suggests an upper
con�dence bound of the expected reward xT�t. Hence,
we adopt the principle of optimism in the face of uncer-
tainty [Auer, 2002] and choose the arm that maximizes
its upper con�dence bound,

Xt = arg max
x2X

�
xTb�t + ub(x)

	
= arg max

x2X

�
xTb�t + �t‖x‖V −1

t

	
;

(10)

where ub(x) = L
Pt�1
p=t0
‖�p − �p+1‖2 + �t‖x‖V −1

t
.

So at iteration t, the algorithm �rst solves the estimator
based on (6), then obtains the con�dence radius �t
by (9), and �nally pulls the arm Xt according to the
selection criteria (10).

3.2.3 Restarted Strategy

To handle the changes of unknown regression param-
eters, RestartUCB algorithm proceeds in epochs and
restarts the procedure every H iterations, as illustrated
in Figure 1. In each epoch, RestartUCB performs the
UCB-style algorithm as described in the last subsection.
We summarize overall procedures in Algorithm 1.

epoch 1
...

UCB

epoch 2 epoch K

UCB UCB

Figure 1: Illustration of RestartUCB algorithm.

Note that although the length of each epoch can be
varied, we �nd that a �xed length is su�cient to achieve
near-optimal theoretical guarantees.

3.3 Theoretical Guarantees

We show that RestartUCB algorithm enjoys a nearly
optimal dynamic regret notwithstanding its simplicity.

First, we analyze the regret within each epoch (The-
orem 1). Then, we sum over epochs to obtain the
guarantee of the whole time horizon (Theorem 2).

Theorem 1. For each epoch E whose size is H and
any � ∈ (0; 1), with probability at least 1 − 2�, the
dynamic regret within the epoch is upper bounded by

D-Regret(E) ≤ 2LHP(E)+2�H

s
2dH log

�
1 +

L2H

�d

�
;

Algorithm 1 RestartUCB

Input: time horizon T , epoch size H, con�dence �
1: Set epoch counter j = 1
2: while j ≤ dT=He do
3: Set � = (j − 1)H
4: Initialize Xτ ∈ X
5: Vτ = �Id
6: for t = � + 1; : : : ; � +H − 1 do
7: Compute b�t by (6) and �t by (9)

8: Select Xt = arg maxx2X {xTb�t + �t‖x‖V −1
t−1
}

9: Receive the reward rt
10: Update Vt = Vt�1 +XtX

T
t

11: end for
12: Set j = j + 1
13: end while

where �H =
√
�S +R

q
2 log 1

δ + d log
�
1 + HL2

λd

�
, and

P(E) denotes the path-length within epoch E, i.e.,
P(E) =

P
t2E‖�t�1 − �t‖2.

By summing regret over epochs, we obtain dynamic
regret over of the whole time horizon.

Theorem 2. Algorithm 1 RestartUCB enjoys the
following dynamic regret guarantee,

D-RegretT ≤ eO�HPT + dT=
√
H
�
: (11)

By setting the epoch size H = H� = b(dT=PT )2/3c, we

achieve an eO(d2/3P
1/3
T T 2/3) dynamic regret.

Remark 1. Cheung et al. [2019a] established an


(d2/3P
1/3
T T 2/3) minimax lower bound for the non-

stationary linear bandits. Hence, the eO(d2/3P
1/3
T T 2/3)

dynamic regret exhibited in Theorem 2 is minimax
optimal in all parameters up to log T factors.

Remark 2. As shown in Theorem 2, the setting of
optimal epoch size H� requires prior information of PT ,
which is generally unavailable. We will discuss how to
remove the undesired dependence in the next section.

4 Extensions

In this section, we �rst apply the restarted strategy
to non-stationary generalized linear bandits, and then
discuss how to adapt to the unknown path-length PT .

4.1 Generalized Linear Bandits

Setting. Generalized linear bandits (GLB) assumes
a link function � : R 7→ R such that rt = �(xT

t �t) + �t,
where �t ∈ Rd is the unknown parameter and can
change over time. Evidently, linear and logistic models
are two of special cases of the generalized linear model,
with �(x) = x and �(x) = 1=(1 + e�x), respectively.
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For non-stationary GLB, dynamic regret is used as the
performance measure, de�ned as

D-RegretT =

TX
t=1

max
x2X

�(xT�t)− �(XT
t �t): (12)

Assumptions. We make the same assumptions with
those of linear bandits as stated in Section 3.1, including
tail conditions of noise, boundedness of feasible set, and
boundedness of unknown regression parameters. In ad-
dition, following previous studies of GLB [Filippi et al.,
2010, Li et al., 2017], we make two additional standard
assumptions on the link function. Concretely, the link
function is assumed to be kµ-Lipschitz, and continu-
ously di�erentiable with cµ = inffθ,x2Xg �

0(�Tx) > 0.
For simplicity, we do not impose the constraint on the
parameter �t, which can be otherwise compensated by
introducing additional projection step as done in the
pioneering work of Filippi et al. [2010].

Estimator. The maximum quasi-likelihood estima-
tor is typically adopted in GLB [Filippi et al., 2010,

Li et al., 2017], where b�t is set as the solution ofPt�1
s=t0

�
rs − �(XT

s �)
�
Xs = 0. Nevertheless, the es-

timator requires
Pt�1
s=t0

XsX
T
s to be invertible for all

iterations in the regret analysis, which is a rather strong
assumption. To address the issue, we solve the estima-
tor b�t by the following regularized estimation equation

�cµ� +

t�1X
s=t0

�
�(XT

s �)− rs
�
Xs = 0; (13)

where � > 0 is the regularization coe�cient. We have
the following guarantee on the estimate error.

Lemma 2. For any t ∈ [T ] and � ∈ (0; 1), with proba-
bility at least 1− �, the following holds for all x ∈ X ,

|�(xTb�t)− �(xT�t)|

≤ kµ
cµ

 
kµL

t�1X
p=t0

‖�p − �p+1‖2 + ��t‖x‖V −1
t−1

!
;

where ��t is the radius of confidence region,

��t = cµ
√
�S +R

s
2 log

1

�
+ d log

�
1 +

(t− t0)L2

�d

�
:

(14)

Based on Lemma 2, we can now specify the action
selection criteria at iteration t as,

Xt = arg max
x2X

�
�(xTb�t) +

kµ
cµ

��t‖x‖V −1
t

�
: (15)

The algorithm for non-stationary generalized linear
bandits (RestartGLB) is similar to that for linear

bandits. At iteration t, RestartGLB algorithm �rst
solves the estimator by (13), and then obtains the
con�dence radius ��t based on (14), and �nally pulls
the arm Xt according to (15).

Note that similar to the existing algorithm (based on
the sliding window) for non-stationary GLB [Cheung
et al., 2019b], our algorithm also requires to store the
whole learning history to solve the estimation equa-
tion (13) at each iteration and thus is ine�cient. Al-
though there exist e�cient algorithms for stationary
GLB [Zhang et al., 2016, Jun et al., 2017], it remains
open for non-stationary generalized linear bandits.

We have the following guarantee for RestartGLB.

Theorem 3. The RestartGLB algorithm enjoys the
dynamic regret of

D-RegretT ≤ eO�HPT + dT=
√
H
�
: (16)

By setting the epoch size H = H� = b(dT=PT )2/3c, we

achieve an eO(d2/3P
1/3
T T 2/3) dynamic regret.

The above dynamic regret is also minimax optimal for
GLB up to logarithmic factors [Cheung et al., 2019a].

4.2 Adapting to Unknown Non-stationarity

Notice that in Theorem 2 and Theorem 3, the con�gu-
ration of the optimal epoch size H� requires knowledge
of path-length PT , which is generally unavailable. We
compensate the lack of this information via the meta-
expert framework studied in previous non-stationary
bandits literatures [Agarwal et al., 2017, Cheung et al.,
2019a, Zhao et al., 2020]. Speci�cally, we run the EXP3
algorithm [Auer et al., 2002] as a meta algorithm to
adaptively choose the optimal epoch size. The method
is referred to as Bandits-over-Bandits (BOB) [Cheung
et al., 2019a], and we defer details to Appendix B.

RestartUCB algorithm together with BOB mechanism
leads to the following dynamic regret without requiring
the prior knowledge of the path-length PT .

Theorem 4. RestartUCB together with Bandits-
over-Bandits mechanism enjoys the dynamic regret of

D-RegretT ≤ eO�d 2
3T

2
3

�
max{PT ; d�

1
2T

1
4 }
� 1

3

�
; (17)

without requiring the path-length PT ahead of time.

Remark 3. When the path-length PT is su�ciently
large (PT ≥ d�

1
2T

1
4 ), the attained dynamic regret

in (17) becomes eO(d2/3P
1/3
T T 2/3), demonstrating that

in this case the approach achieves the minimax opti-
mal dynamic regret guarantee without requiring prior
knowledge of PT . However, it remains open on how to
obtain rate-optimal and parameter-free dynamic regret
when the path-length PT is small.
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5 Analysis

In this section, we provide proofs of theoretical results
presented in the previous two sections.

5.1 Analysis of Linear Bandits

We provide proofs of Lemma 1 and Theorems 1, 2.

Proof of Lemma 1. From the model assumption (4)
and the estimator (6), we can verify that the estimate
error can be decomposed as,

b�t−�t = V �1
t�1

 
t�1X
s=t0

XsX
T
s (�s−�t)+

t�1X
s=t0

�sXs−��t

!
:

Therefore, by Cauchy-Schwartz inequality, we know
that for any x ∈ X ,

|xT(b�t − �t)| ≤ ‖x‖2 ·At + ‖x‖V −1
t−1
·Bt; (18)

where

At =





V �1
t�1

�Xt�1

s=t0
XsX

T
s (�s − �t)

�




2

;

Bt =





Xt�1

s=t0
�sXs − ��t






V −1
t−1

:

These two terms can be bounded separately, summa-
rized in the following lemma for a better presentation.
We present the proof of Lemma 3 in Appendix A.

Lemma 3. At and Bt can be upper bounded as follows.

• At ≤
Pt�1
p=t0
‖�p − �p+1‖2;

• Bt ≤ �t, where �t is the confidence radius (9).

Based on the inequality (18), Lemma 3, and the bound-
edness of the feasible set, we have

〈x; b�t − �t〉 ≤ L tX
p=1

‖�p − �p+1‖2 + �t‖x‖V −1
t−1
;

which competes the proof.

Proof of Theorem 1. Due to Lemma 1 and the fact
that X�t ; Xt ∈ X , each of the following holds with
probability at least 1− �,

〈X�t ; �t〉 ≤ 〈X�t ; b�t〉+ L

t�1X
p=t0

‖�p − �p+1‖2 + �t‖X�t ‖V −1
t−1
;

〈Xt; �t〉 ≥ 〈Xt; b�t〉+ L

t�1X
p=t0

‖�p − �p+1‖2 + �t‖Xt‖V −1
t−1
:

By the union bound, the following holds with probabil-
ity at least 1− 2�,

〈X�t ; �t〉 − 〈Xt; �t〉

≤ 〈X�t ; b�t〉 − 〈Xt; b�t〉+ 2L

t�1X
p=t0

‖�p − �p+1‖2

+ �t(‖X�t ‖V −1
t−1

+ ‖Xt‖V −1
t−1

)

≤ 2L

t�1X
p=t0

‖�p − �p+1‖2 + 2�t‖Xt‖V −1
t−1
;

where the last step comes from the following implication
of the arm selection criteria (10),

〈X�t ; b�t〉+ �t‖X�t ‖V −1
t−1
≤ 〈Xt; b�t〉+ �t‖Xt‖V −1

t−1
:

Hence, dynamic regret within epoch E is bounded by,

D-Regret(E) ≤
X
t2E

2L

t�1X
p=t0

‖�p − �p+1‖2 + 2�t‖Xt‖V −1
t−1

≤ 2LHP(E) + 2�H

s
2dH log

�
1 +

L2H

�d

�
;

where the last inequality holds due to the standard
elliptical potential lemma (Lemma 4), whose statement
and proof are presented in Appendix C.

Proof of Theorem 2.
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then by the mean value theorem, we know that

gt(b�t)− gt(�t) = Gt(b�t − �t) (20)

where Gt =
R 1

0
∇gt(s�t + (1− s)b�t) ds. Notice that for

any �, the gradient of gt is

∇gt(�) = �cµI +

t�1X
s=t0

�0(XT
s �)XsX

T
s � cµVt�1;

which clearly implies Gt � cµVt�1. From the func-
tion (19) and the estimation equation (13), we conclude

that gt(b�t)− gt(�t) equals to

−
t�1X
s=t0

�
�(XT

s �t)− �(XT
s �s)

�
Xs +

t�1X
s=t0

�sXs − �cµ�t:

Due to the Lipschitz continuity of the link function,
|�(xTb�t)−�(xT�t)| ≤ kµ|〈x; b�t−�t〉|. Meanwhile, from
previous derivations, we have

|xT(b�t − �t)| (20)
= |xTG�1

t (gt(b�t)− gt(�t))|
≤ L






G�1
t

 
t�1X
s=t0

�
�(XT

s �t)− �(XT
s �s)

�
Xs

!





2| {z }

term (a)

+

����xTG�1
t

�Xt�1

s=t0
�sXs

�����| {z }
term (b)

+
��xTG�1

t (�cµ�t)
��| {z }

term (c)

First, term (a) can be bounded as

term (a) ≤ Lkµ
cµ

t�1X
p=t0

‖�p − �p+1‖2;

whose proof is basically same as that of Lemma 3 and
can be found in Appendix H of Cheung et al. [2019b].

Then, term (b) can be upper bounded by the self-
normalize concentration inequality [Abbasi-Yadkori
et al., 2011, Theorem 1],

term (b) ≤ R

s
2 log

1

�
+ d log

�
1 +

(t− t0)L2

�d

�
‖x‖V −1

t−1
:

Next, by noticing Gt � cµVt�1, we obtain that

term (c) ≤ �‖x‖V −1
t−1
‖�t‖V −1

t−1
≤
√
�S‖x‖V −1

t−1
:

We compete the proof by combining upper bounds of
all these three terms.

Proof of Theorem 3. Similar to the proof of Theorem 1,
we know that with probability at least 1− 2�, dynamic
regret within the epoch E (i.e., D-Regret(E)) is at most

2k2
µ

cµ
LHP(E) +

2kµ
cµ

��H

s
2dH log

�
1 +

L2H

�d

�
;

where ��H is de�ned in (14).

By taking the union bound over all the epochs, we
conclude that dynamic regret is bounded by

2kµ
cµ

 
kµLHPT + T ��H

s
2d

H
log

�
1 +

L2H

�d

�!
;

which is of order eO�HPT + dT=
√
H
�
.

6 Empirical Studies

Despite the focus of this paper is on the theoretical
aspect, we present empirical studies to further evaluate
the proposed approach.

Contenders. We study two kinds of non-stationary
environments: the underlying parameter is abruptly
changing or gradually changing. Besides, We compare
RestartUCB to (a) WindowUCB, based on the slid-
ing window least square [Cheung et al., 2019a]; (b)
WeightUCB, based on the weighted least square [Rus-
sac et al., 2019]; (c) StaticUCB, the algorithm designed
for stationary linear bandits [Abbasi-Yadkori et al.,
2011]. In the scenario of abrupt change, we addition-
ally compare with OracleRestartUCB, which knows
the exact information of change points and restarts the
algorithm when reaching a change point.

Settings. In abruptly-changing environments, the
unknown regression parameter �t is periodically set as
[1; 0], [−1; 0], [0; 1], [0;−1] in the �rst half of iterations,
and [1; 0] for the remaining iterations. In gradually-
changing environments, �t is moved from [1;
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Figure 2: Comparisons of di�erent approaches in terms of dynamic regret, in logarithmic scale.

WindowUCB and RestartUCB. Nevertheless, as will
be shown later, WeightUCB takes a signi�cantly longer
running time than our approach.

Figure 3 reports the running time. We can see that time
costs of RestartUCB, WindowUCB, and StaticUCB
are basically the same, whereas WeightUCB requires
a signi�cantly longer running time, almost twice the
cost of other contenders. The reason lies in the fact
that WeightUCB algorithm involves the computation
of the inverse of covariance matrix Vt ∈ Rd�d and its
variant eVt ∈ Rd�d, while other three methods maintain
and manipulate only one covariance matrix.

From empirical studies, we conclude that RestartUCB
algorithm is more favored in abruptly-changing environ-
ments empirically, highly comparable to WindowUCB.
We note that RestartUCB has an additional advantage
over WindowUCB, RestartUCB supports the one-pass
update without storing historical data, whereas Win-
dowUCB has to maintain a bu�er and thus needs to
scan data multiple times owing to the sliding window
strategy. On the other hand, compared with Weigh-
tUCB, our approach only maintains one covariance
matrix and is thus simpler and faster. It is noteworthy
that our approach can be further accelerated by the
recursive least square, which will save the computa-
tion of the inverse of covariance matrix and can be
particularly desired in high-dimensional problems.

7 Conclusion

In this paper, we study the problem of non-stationary
linear bandits, where the unknown regression param-
eter �t is changing over time. We propose a sim-
ple algorithm based on the restarted strategy, which
enjoys strong theoretical guarantees notwithstanding
its simplicity. Concretely, our algorithm enjoys an
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Figure 3: Comparisons in terms of running time.

eO(d2/3(1 + PT )1/3T 2/3) dynamic regret, and the rate
is near-optimal, matching the minimax lower bound
up to log T factors. The restarted strategy can be ex-
tended to the non-stationary generalized linear bandits
and also achieves a near-optimal regret. Empirical
studies validate the e�cacy of the proposed approach,
particularly in the abruptly-changing environments.

In the future, we would like to study how to design al-
gorithms for non-stationary linear bandits that achieve
rate-optimal dynamic regret without prior information.
Moreover, as mentioned earlier, existing algorithms for
non-stationary generalized linear bandits are ine�cient
in the sense that they require to store historical data in
memory to compute the estimator, and we will explore
more e�cient algorithms for non-stationary GLB.
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